Suppr超能文献

在PAR-CLIP数据中对RNA-蛋白质相互作用位点进行灵敏且高分辨率的鉴定。

Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data.

作者信息

Comoglio Federico, Sievers Cem, Paro Renato

机构信息

Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich, Mattenstrasse 26, Basel, 4058, Switzerland.

Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, USA.

出版信息

BMC Bioinformatics. 2015 Feb 1;16:32. doi: 10.1186/s12859-015-0470-y.

Abstract

BACKGROUND

PAR-CLIP is a recently developed Next Generation Sequencing-based method enabling transcriptome-wide identification of interaction sites between RNA and RNA-binding proteins. The PAR-CLIP procedure induces specific base transitions that originate from sites of RNA-protein interactions and can therefore guide the identification of binding sites. However, additional sources of transitions, such as cell type-specific SNPs and sequencing errors, challenge the inference of binding sites and suitable statistical approaches are crucial to control false discovery rates. In addition, a highly resolved delineation of binding sites followed by an extensive downstream analysis is necessary for a comprehensive characterization of the protein binding preferences and the subsequent design of validation experiments.

RESULTS

We present a statistical and computational framework for PAR-CLIP data analysis. We developed a sensitive transition-centered algorithm specifically designed to resolve protein binding sites at high resolution in PAR-CLIP data. Our method employes a Bayesian network approach to associate posterior log-odds with the observed transitions, providing an overall quantification of the confidence in RNA-protein interaction. We use published PAR-CLIP data to demonstrate the advantages of our approach, which compares favorably with alternative algorithms. Lastly, by integrating RNA-Seq data we compute conservative experimentally-based false discovery rates of our method and demonstrate the high precision of our strategy.

CONCLUSIONS

Our method is implemented in the R package wavClusteR 2.0. The package is distributed under the GPL-2 license and is available from BioConductor at http://www.bioconductor.org/packages/devel/bioc/html/wavClusteR.html .

摘要

背景

PAR-CLIP是一种最近开发的基于下一代测序的方法,能够在转录组范围内鉴定RNA与RNA结合蛋白之间的相互作用位点。PAR-CLIP程序会诱导特定的碱基转换,这些转换源自RNA-蛋白质相互作用位点,因此可以指导结合位点的鉴定。然而,其他转换来源,如细胞类型特异性单核苷酸多态性和测序错误,对结合位点的推断提出了挑战,合适的统计方法对于控制错误发现率至关重要。此外,为了全面表征蛋白质结合偏好以及随后设计验证实验,需要对结合位点进行高度解析的描绘,并进行广泛的下游分析。

结果

我们提出了一个用于PAR-CLIP数据分析的统计和计算框架。我们开发了一种以转换为中心的灵敏算法,专门设计用于在PAR-CLIP数据中高分辨率解析蛋白质结合位点。我们的方法采用贝叶斯网络方法将后验对数几率与观察到的转换相关联,提供对RNA-蛋白质相互作用置信度的整体量化。我们使用已发表的PAR-CLIP数据来证明我们方法的优势,该方法与其他算法相比具有优势。最后,通过整合RNA-Seq数据,我们计算了基于实验的保守错误发现率,并证明了我们策略的高精度。

结论

我们的方法在R包wavClusteR 2.0中实现。该包根据GPL-2许可分发,可从BioConductor获取,网址为http://www.bioconductor.org/packages/devel/bioc/html/wavClusteR.html

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932f/4339748/d98197d29a4a/12859_2015_470_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验