Li Mengjie, Gehring Ronette, Lin Zhoumeng, Riviere Jim
Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.
J Pharm Sci. 2015 Apr;104(4):1230-9. doi: 10.1002/jps.24341. Epub 2015 Jan 12.
Combining data from available studies is a useful approach to interpret the overwhelming amount of data generated in medical research from multiple studies. Paradoxically, in veterinary medicine, lack of data requires integrating available data to make meaningful population inferences. Nonlinear mixed-effects modeling is a useful tool to apply meta-analysis to diverse pharmacokinetic (PK) studies of veterinary drugs. This review provides a summary of the characteristics of PK data of veterinary drugs and how integration of these data may differ from human PK studies. The limits of meta-analysis include the sophistication of data mining, and generation of misleading results caused by biased or poor quality data. The overriding strength of meta-analysis applied to this field is that robust statistical analysis of the diverse sparse data sets inherent to veterinary medicine applications can be accomplished, thereby allowing population inferences to be made.
整合现有研究的数据是解读医学研究中多项研究产生的海量数据的一种有用方法。矛盾的是,在兽医学中,由于缺乏数据,需要整合现有数据以做出有意义的总体推断。非线性混合效应模型是将荟萃分析应用于兽药各种药代动力学(PK)研究的有用工具。本综述总结了兽药PK数据的特点,以及这些数据的整合与人类PK研究可能存在的差异。荟萃分析的局限性包括数据挖掘的复杂性,以及由有偏差或质量差的数据导致的误导性结果。将荟萃分析应用于该领域的最大优势在于,可以对兽医学应用中固有的各种稀疏数据集进行稳健的统计分析,从而做出总体推断。