Suppr超能文献

仿生微型机器人在矩形通道中的受限游动

Confined swimming of bio-inspired microrobots in rectangular channels.

作者信息

Temel Fatma Zeynep, Yesilyurt Serhat

机构信息

School of Engineering, Brown University, Providence, RI 02912, USA. Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.

出版信息

Bioinspir Biomim. 2015 Feb 2;10(1):016015. doi: 10.1088/1748-3190/10/1/016015.

Abstract

Controlled swimming of bio-inspired microrobots in confined spaces needs to be understood well for potential use in medical applications in conduits and vessels inside the body. In this study, experimental and computational studies are performed for analysis of swimming modes of a bio-inspired microrobot in rectangular channels at low Reynolds number. Experiments are performed on smooth and rough surfaces using a magnetic helical swimmer (MHS), having 0.5 mm diameter and 2 mm length, with left-handed helical tail and radially polarized magnetic head within rotating magnetic field obtained by two electromagnetic coil pairs. Experiments indicate three motion modes of the MHS with respect to the rotation frequency: (i) lateral motion under the effect of a perpendicular force such as gravity and the surface traction at low frequencies, (ii) lateral motion under the effect of fluid forces and gravity at transition frequencies, and (iii) circular motion under the effect of fluid forces at high frequencies. Observed modes of motion for the MHS are investigated with computational fluid dynamics simulations by calculating translational and angular velocities and studying the induced flow fields for different radial positions inside the channel. Results indicate the importance of rotation frequency, surface roughness and flow field on the swimming modes and behaviour of the MHS inside the rectangular channel.

摘要

为了在体内管道和血管的医学应用中实现潜在用途,需要深入了解受生物启发的微型机器人在受限空间中的可控游动。在本研究中,进行了实验和计算研究,以分析受生物启发的微型机器人在低雷诺数矩形通道中的游动模式。使用直径为0.5毫米、长度为2毫米的磁性螺旋游动器(MHS)在光滑和粗糙表面上进行实验,该游动器具有左旋螺旋尾部和径向极化磁头,在由两个电磁线圈对产生的旋转磁场中。实验表明,MHS相对于旋转频率有三种运动模式:(i)在低频下,在重力和表面牵引力等垂直力作用下的横向运动;(ii)在过渡频率下,在流体力和重力作用下的横向运动;(iii)在高频下,在流体力作用下的圆周运动。通过计算平移和角速度并研究通道内不同径向位置的诱导流场,用计算流体动力学模拟研究了MHS观察到的运动模式。结果表明,旋转频率、表面粗糙度和流场对矩形通道内MHS的游动模式和行为具有重要影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验