Dabertrand Fabrice, Krøigaard Christel, Bonev Adrian D, Cognat Emmanuel, Dalsgaard Thomas, Domenga-Denier Valérie, Hill-Eubanks David C, Brayden Joseph E, Joutel Anne, Nelson Mark T
Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405;
INSERM, U1161 and Université Paris Diderot, Sorbonne Cité, UMR S1161, Paris, F-75010, France; and.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E796-805. doi: 10.1073/pnas.1420765112. Epub 2015 Feb 2.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), caused by dominant mutations in the NOTCH3 receptor in vascular smooth muscle, is a genetic paradigm of small vessel disease (SVD) of the brain. Recent studies using transgenic (Tg)Notch3(R169C) mice, a genetic model of CADASIL, revealed functional defects in cerebral (pial) arteries on the surface of the brain at an early stage of disease progression. Here, using parenchymal arterioles (PAs) from within the brain, we determined the molecular mechanism underlying the early functional deficits associated with this Notch3 mutation. At physiological pressure (40 mmHg), smooth muscle membrane potential depolarization and constriction to pressure (myogenic tone) were blunted in PAs from TgNotch3(R169C) mice. This effect was associated with an ∼ 60% increase in the number of voltage-gated potassium (KV) channels, which oppose pressure-induced depolarization. Inhibition of KV1 channels with 4-aminopyridine (4-AP) or treatment with the epidermal growth factor receptor agonist heparin-binding EGF (HB-EGF), which promotes KV1 channel endocytosis, reduced KV current density and restored myogenic responses in PAs from TgNotch3(R169C) mice, whereas pharmacological inhibition of other major vasodilatory influences had no effect. KV1 currents and myogenic responses were similarly altered in pial arteries from TgNotch3(R169C) mice, but not in mesenteric arteries. Interestingly, HB-EGF had no effect on mesenteric arteries, suggesting a possible mechanistic basis for the exclusive cerebrovascular manifestation of CADASIL. Collectively, our results indicate that increasing the number of KV1 channels in cerebral smooth muscle produces a mutant vascular phenotype akin to a channelopathy in a genetic model of SVD.
伴有皮质下梗死和白质脑病的脑常染色体显性动脉病(CADASIL)由血管平滑肌中NOTCH3受体的显性突变引起,是脑小血管病(SVD)的遗传范例。最近使用CADASIL遗传模型转基因(Tg)Notch3(R169C)小鼠的研究表明,在疾病进展的早期阶段,脑表面的脑(软脑膜)动脉存在功能缺陷。在此,我们利用脑实质内的小动脉(PA),确定了与这种Notch3突变相关的早期功能缺陷的分子机制。在生理压力(40 mmHg)下,TgNotch3(R169C)小鼠的PA中平滑肌膜电位去极化和对压力的收缩(肌源性张力)减弱。这种效应与电压门控钾(KV)通道数量增加约60%有关,KV通道可对抗压力诱导的去极化。用4-氨基吡啶(4-AP)抑制KV1通道或用促进KV1通道内吞作用的表皮生长因子受体激动剂肝素结合表皮生长因子(HB-EGF)处理,可降低KV电流密度并恢复TgNotch3(R169C)小鼠PA中的肌源性反应,而对其他主要血管舒张影响的药理抑制则无效。TgNotch3(R169C)小鼠软脑膜动脉中的KV1电流和肌源性反应也有类似改变,但肠系膜动脉中没有。有趣的是,HB-EGF对肠系膜动脉没有影响,这表明CADASIL独特的脑血管表现可能存在机制基础。总体而言,我们的结果表明,脑平滑肌中KV1通道数量的增加在SVD遗传模型中产生了类似于通道病的突变血管表型。