†Department of Chemistry, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
‡Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Acc Chem Res. 2015 Mar 17;48(3):782-91. doi: 10.1021/ar500353h. Epub 2015 Feb 3.
Bis-diimine Cu(I) complexes exhibit strong absorption in the visible region owing to the metal-to-ligand charge transfer (MLCT) transitions, and the triplet MLCT ((3)MLCT) states have long lifetimes. Because these characteristics are highly suitable for photosensitizers and photocatalysts, bis-diimine Cu(I) complexes have been attracting much interest. An intriguing feature of the Cu(I) complexes is the photoinduced structural change called "flattening". Bis-diimine Cu(I) complexes usually have tetrahedron-like D2d structures in the ground (S0) state, in which two ligands are perpendicularly attached to the Cu(I) ion. With MLCT excitation, the central Cu(I) ion is formally oxidized to Cu(II), which induces the structural change to the "flattened" square-planar-like structure that is seen for usual Cu(II) complexes. In this Account, we review our recent studies on ultrafast excited-state dynamics of bis-diimine Cu(I) complexes carried out using femtosecond time-resolved optical spectroscopy. Focusing on three prototypical bis-diimine Cu(I) complexes that have 1,10-phenanthroline ligands with different substituents at the 2,9-positions, i.e., Cu(phen)2 (phen = 1,10-phenanthroline), Cu(dmphen)2 (dmphen = 2,9-dimethyl-1,10-phenanthroline), and Cu(dpphen)2 (dpphen = 2,9-diphenyl-1,10-phenanthroline), we examined their excited-state dynamics by time-resolved emission and absorption spectroscopies with 200 fs time resolution, observed the excited-state coherent nuclear motion with 30 fs time resolution and performed complementary theoretical calculations. This combined approach vividly visualizes excited-state processes in the MLCT state of bis-diimine Cu(I) complexes. It was demonstrated that flattening distortion, internal conversion, and intersystem crossing occur on the femtosecond-early picosecond time scale, and their dynamics is clearly identified separately. The flattening distortion predominantly occurs in the S1 state on the subpicosecond time-scale, and the precursor S1 state retaining the initial undistorted structure appears as a metastable state before the structural change. This observation indicates that the traditional understanding based on the Jahn-Teller effect appears irrelevant for realistically discussing the photoinduced structural change of bis-diimine Cu(I) complexes. The lifetime of the precursor S1 state significantly depends on the substituents in the three complexes, indicating that the flattering distortion requires a longer time as the substituents at 2,9-positions of the ligands become bulkier. It is suggested that the substituents are rotated to avoid steric repulsions to achieve the flattened structure at the global minimum of the S1 state, implying the necessity of discussion based on a multidimensional potential energy surface to properly consider this excited-state structural change. After the flattening distortion, the S1 states of Cu(dmphen)2 and Cu(dpphen)2, which have bulky substituents, relax to the T1 state by intersystem crossing on the ∼10 ps time scale, while the flattened S1 state of Cu(phen)2 relaxes directly to the S0 state on the ∼2 ps time scale. This difference is rationalized in terms of the different magnitude of the flattening distortion and relevant changes in the potential energy surfaces. Clear understanding of the ultrafast excited-state process provides a solid basis for designing and using Cu(I) complexes, such as controlling the structural change to efficiently utilize the energy of the MLCT state in solar energy conversion.
双二亚胺 Cu(I) 配合物由于金属-配体电荷转移 (MLCT) 跃迁而在可见光区域表现出强吸收,并且三重态 MLCT((3)MLCT) 态具有长寿命。由于这些特性非常适合用作光敏剂和光催化剂,因此双二亚胺 Cu(I) 配合物引起了广泛的关注。Cu(I) 配合物的一个有趣特征是称为“扁平化”的光诱导结构变化。双二亚胺 Cu(I) 配合物通常在基态 (S0) 中具有四面体状 D2d 结构,其中两个配体垂直连接到 Cu(I) 离子上。在 MLCT 激发下,中心 Cu(I) 离子被形式氧化为 Cu(II),这会导致结构发生变化,变为通常的 Cu(II) 配合物所具有的“扁平化”的平面四方结构。在本综述中,我们回顾了我们最近使用飞秒时间分辨光学光谱研究双二亚胺 Cu(I) 配合物的超快激发态动力学的研究。重点介绍了具有不同 2,9-位取代基的三个典型双二亚胺 Cu(I) 配合物,即Cu(phen)2(phen = 1,10-菲咯啉)、Cu(dmphen)2(dmphen = 2,9-二甲基-1,10-菲咯啉)和Cu(dpphen)2(dpphen = 2,9-二苯基-1,10-菲咯啉),我们通过具有 200 fs 时间分辨率的时间分辨发射和吸收光谱研究了它们的激发态动力学,通过 30 fs 时间分辨率观察了激发态相干核运动,并进行了补充的理论计算。这种组合方法生动地可视化了双二亚胺 Cu(I) 配合物的 MLCT 态中的激发态过程。结果表明,扁平化畸变、内转换和系间窜越发生在飞秒-早期皮秒时间尺度上,并且可以分别清楚地识别它们的动力学。扁平化畸变主要在亚皮秒时间尺度上的 S1 态中发生,在结构变化之前,表现为亚稳态的具有初始未畸变结构的前体 S1 态出现。这一观察结果表明,基于 Jahn-Teller 效应的传统理解与实际讨论双二亚胺 Cu(I) 配合物的光诱导结构变化不相关。前体 S1 态的寿命强烈依赖于三个配合物中的取代基,表明随着配体 2,9-位上的取代基变得更大,扁平化畸变需要更长的时间。这表明取代基需要旋转以避免空间位阻,从而在 S1 态的全局最小值处达到扁平化结构,这意味着需要基于多维势能面进行讨论才能正确考虑这种激发态结构变化。扁平化畸变后,具有较大取代基的Cu(dmphen)2和Cu(dpphen)2的 S1 态通过系间窜越在 ∼10 ps 时间尺度上弛豫到 T1 态,而Cu(phen)2的扁平化 S1 态则直接在 ∼2 ps 时间尺度上弛豫到 S0 态。这种差异可以根据不同程度的扁平化畸变和相关势能面的变化来解释。对超快激发态过程的清晰理解为设计和使用 Cu(I) 配合物提供了坚实的基础,例如控制结构变化以有效地利用太阳能转换中的 MLCT 态能量。