Suppr超能文献

利用简化的非洲爪蟾原位杂交方案理解早期器官发生

Understanding early organogenesis using a simplified in situ hybridization protocol in Xenopus.

作者信息

Deimling Steven J, Halabi Rami R, Grover Stephanie A, Wang Jean H, Drysdale Thomas A

机构信息

Developmental and Stem Cell Biology, Hospital for Sick Children.

Children's Health Research Institute, University of Western Ontario; Department of Physiology and Pharmacology, University of Western Ontario.

出版信息

J Vis Exp. 2015 Jan 12(95):e51526. doi: 10.3791/51526.

Abstract

Organogenesis is the study of how organs are specified and then acquire their specific shape and functions during development. The Xenopuslaevis embryo is very useful for studying organogenesis because their large size makes them very suitable for identifying organs at the earliest steps in organogenesis. At this time, the primary method used for identifying a specific organ or primordium is whole mount in situ hybridization with labeled antisense RNA probes specific to a gene that is expressed in the organ of interest. In addition, it is relatively easy to manipulate genes or signaling pathways in Xenopus and in situ hybridization allows one to then assay for changes in the presence or morphology of a target organ. Whole mount in situ hybridization is a multi-day protocol with many steps involved. Here we provide a simplified protocol with reduced numbers of steps and reagents used that works well for routine assays. In situ hybridization robots have greatly facilitated the process and we detail how and when we utilize that technology in the process. Once an in situ hybridization is complete, capturing the best image of the result can be frustrating. We provide advice on how to optimize imaging of in situ hybridization results. Although the protocol describes assessing organogenesis in Xenopus laevis, the same basic protocol can almost certainly be adapted to Xenopus tropicalis and other model systems.

摘要

器官发生学是研究器官在发育过程中如何被特化,进而获得其特定形状和功能的学科。非洲爪蟾胚胎对于研究器官发生非常有用,因为其体型较大,非常适合在器官发生的最初阶段识别器官。此时,用于识别特定器官或原基的主要方法是使用与在感兴趣器官中表达的基因特异的标记反义RNA探针进行整胚原位杂交。此外,在非洲爪蟾中操纵基因或信号通路相对容易,原位杂交使人们能够随后检测目标器官的存在或形态变化。整胚原位杂交是一个涉及多个步骤的多日实验方案。在这里,我们提供了一个简化的方案,减少了步骤数量和所用试剂,适用于常规检测。原位杂交机器人极大地促进了这一过程,我们详细介绍了在该过程中如何以及何时使用该技术。原位杂交完成后,获取结果的最佳图像可能会令人沮丧。我们提供了关于如何优化原位杂交结果成像的建议。尽管该方案描述的是评估非洲爪蟾的器官发生,但几乎可以肯定,相同的基本方案可适用于热带爪蟾和其他模型系统。

相似文献

3
Whole-mount in situ hybridization and detection of RNAs in vertebrate embryos and isolated organs.
Curr Protoc Mol Biol. 2004 May;Chapter 14:Unit 14.9. doi: 10.1002/0471142727.mb1409s66.
4
Whole-Mount In Situ Hybridization of Oocytes.
Cold Spring Harb Protoc. 2018 Mar 1;2018(3):2018/3/pdb.prot097014. doi: 10.1101/pdb.prot097014.
5
Sodium dodecyl sulfate (SDS)-based whole-mount in situ hybridization of Xenopus laevis embryos.
J Biochem Biophys Methods. 1996 Feb 5;31(3-4):185-8. doi: 10.1016/0165-022x(95)00030-u.
6
Nonradioactive in situ hybridization to xenopus tissue sections.
Methods. 2001 Apr;23(4):303-12. doi: 10.1006/meth.2000.1142.
7
In Situ Hybridization and Immunostaining of Xenopus Brain.
Methods Mol Biol. 2020;2047:363-375. doi: 10.1007/978-1-4939-9732-9_20.
8
Whole-Mount In Situ Hybridization of Embryos.
Cold Spring Harb Protoc. 2017 Dec 1;2017(12):pdb.prot097287. doi: 10.1101/pdb.prot097287.
9
A rapid protocol for whole-mount in situ hybridization on Xenopus embryos.
CSH Protoc. 2007 Aug 1;2007:pdb.prot4809. doi: 10.1101/pdb.prot4809.
10
Three calcium-sensitive genes, fus, brd3 and wdr5, are highly expressed in neural and renal territories during amphibian development.
Biochim Biophys Acta. 2013 Jul;1833(7):1665-71. doi: 10.1016/j.bbamcr.2012.12.015. Epub 2012 Dec 31.

引用本文的文献

1
Visual Experience Facilitates BDNF-Dependent Adaptive Recruitment of New Neurons in the Postembryonic Optic Tectum.
J Neurosci. 2018 Feb 21;38(8):2000-2014. doi: 10.1523/JNEUROSCI.1962-17.2018. Epub 2018 Jan 23.
2
Two-color fluorescence in situ hybridization using chromogenic substrates in .
Biotechniques. 2016 Nov 1;61(5):263-268. doi: 10.2144/000114475. eCollection 2016.

本文引用的文献

1
Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo.
J Cell Sci. 2012 Apr 15;125(Pt 8):1877-83. doi: 10.1242/jcs.095315. Epub 2012 Feb 10.
2
Fgf is required to regulate anterior-posterior patterning in the Xenopus lateral plate mesoderm.
Mech Dev. 2011 Sep-Dec;128(7-10):327-41. doi: 10.1016/j.mod.2011.06.002. Epub 2011 Jul 8.
4
Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1.
Cardiovasc Res. 2008 Aug 1;79(3):436-47. doi: 10.1093/cvr/cvn105. Epub 2008 Apr 27.
6
The efficiency of Xenopus primordial germ cell migration depends on the germplasm mRNA encoding the PDZ domain protein Grip2.
Differentiation. 2008 Apr;76(4):392-403. doi: 10.1111/j.1432-0436.2007.00229.x. Epub 2007 Oct 9.
7
Xenopus cDNA microarray identification of genes with endodermal organ expression.
Dev Dyn. 2007 Jun;236(6):1633-49. doi: 10.1002/dvdy.21167.
10
Pattern formation in artificially activated ectoderm (Rana pipiens and Ambystoma punctatum).
Dev Biol. 1963 Mar;6:255-79. doi: 10.1016/0012-1606(63)90122-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验