Donald J A, Lillywhite H B
Department of Zoology, University of Florida, Gainesville 32611.
Cell Tissue Res. 1989 Mar;255(3):585-8. doi: 10.1007/BF00218794.
The indirect immunofluorescence technique was used to determine the distribution of vasoactive intestinal polypeptide-immunoreactive and somatostatin-immunoreactive axons in the pulmonary vasculature of the aquatic file snake Acrochordus granulatus. A dense distribution of vasoactive intestinal polypeptide-immunoreactive axons was found on the common pulmonary artery, the anterior and posterior pulmonary arteries, and the smaller arteries branching to the lung. The density of these axons appeared greater in arterial preparations taken from more distal regions of the lung. The densest distribution of vasoactive intestinal polypeptide-immunoreactive axons was observed on the larger pulmonary veins in all regions of the lung. These axons were observed on the larger veins within the lung parenchyma but not on the smaller veins. Axons and cell bodies were observed in the vagal nerve trunks which run parallel to the pulmonary arteries and veins. In contrast, no somatostatin-immunoreactive axons were observed in any region of the pulmonary vasculature. It is proposed that the perivascular plexus of vasoactive intestinal polypeptide-immunoreactive axons may represent part or all of the vagal postganglionic innervation of the pulmonary vasculature.