Poyser Caroline L, Akimov Andrey V, Campion Richard P, Kent Anthony J
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
Sci Rep. 2015 Feb 5;5:8279. doi: 10.1038/srep08279.
Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.
声子光学涉及在固体介质中对高频声波的操控,其方式类似于传统光学对光束(即光子)的操控。利用相干太赫兹和亚太赫兹声子进行的声子光学实验有望在与高频声学、成像及热传输相关的各种技术应用中引发一场革命。此前,声子光学采用被动方法来操控传播的声子束,无法对其进行外部控制。在此,我们制造了一种声子芯片,它包括一个频率为378吉赫的相干单色声子发生器、一个灵敏的相干声子探测器以及一个有源层:一个插入声子传播路径且带有电触点的掺杂半导体超晶格。在实验中,我们展示了通过施加到有源层的外部电偏置对相干声子通量进行调制。使用外部控制的声子光学拓宽了纳米尺度声子学潜在应用的范围。