Suppr超能文献

将3D打印技术应用于头帽和电极驱动器的设计中,用于记录多个脑区的神经元。

Incorporating 3D-printing technology in the design of head-caps and electrode drives for recording neurons in multiple brain regions.

作者信息

Headley Drew B, DeLucca Michael V, Haufler Darrell, Paré Denis

机构信息

Center for Molecular and Behavioral Neuroscience, Rutgers-Newark, The State University of New Jersey, Newark, New Jersey

Center for Molecular and Behavioral Neuroscience, Rutgers-Newark, The State University of New Jersey, Newark, New Jersey.

出版信息

J Neurophysiol. 2015 Apr 1;113(7):2721-32. doi: 10.1152/jn.00955.2014. Epub 2015 Feb 4.

Abstract

Recent advances in recording and computing hardware have enabled laboratories to record the electrical activity of multiple brain regions simultaneously. Lagging behind these technical advances, however, are the methods needed to rapidly produce microdrives and head-caps that can flexibly accommodate different recording configurations. Indeed, most available designs target single or adjacent brain regions, and, if multiple sites are targeted, specially constructed head-caps are used. Here, we present a novel design style, for both microdrives and head-caps, which takes advantage of three-dimensional printing technology. This design facilitates targeting of multiple brain regions in various configurations. Moreover, the parts are easily fabricated in large quantities, with only minor hand-tooling and finishing required.

摘要

记录和计算硬件的最新进展使实验室能够同时记录多个脑区的电活动。然而,能够灵活适应不同记录配置的微驱动器和头帽的快速生产方法却落后于这些技术进步。实际上,大多数现有的设计针对的是单个或相邻的脑区,如果针对多个位点,则使用特殊构造的头帽。在此,我们展示了一种适用于微驱动器和头帽的新颖设计风格,它利用了三维打印技术。这种设计便于以各种配置靶向多个脑区。此外,这些部件易于大量制造,只需要少量的手工加工和精加工。

相似文献

2
Ceramic-based multisite electrode arrays for chronic single-neuron recording.
IEEE Trans Biomed Eng. 2004 Apr;51(4):647-56. doi: 10.1109/TBME.2003.821037.
3
In vivo validation of the electronic depth control probes.
Biomed Tech (Berl). 2014 Aug;59(4):283-9. doi: 10.1515/bmt-2012-0102.
4
A motorized microdrive for recording of neural ensembles in awake behaving rats.
J Biomech Eng. 2005 Nov;127(6):1035-40. doi: 10.1115/1.2049332.
7
A 3D slim-base probe array for in vivo recorded neuron activity.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5798-801. doi: 10.1109/IEMBS.2008.4650532.
8
A novel high channel-count system for acute multisite neuronal recordings.
IEEE Trans Biomed Eng. 2006 Aug;53(8):1672-7. doi: 10.1109/TBME.2006.877807.
9
Micro-multi-probe electrode array to measure neural signals.
Biosens Bioelectron. 2009 Mar 15;24(7):1911-7. doi: 10.1016/j.bios.2008.09.027. Epub 2008 Oct 15.
10
Simultaneous in vivo recording of local brain temperature and electrophysiological signals with a novel neural probe.
J Neural Eng. 2017 Jun;14(3):034001. doi: 10.1088/1741-2552/aa60b1. Epub 2017 Feb 15.

引用本文的文献

2
Common Neocortical and Hippocampal Correlates of Performance Errors in a Timing Task.
J Neurosci. 2025 Feb 12;45(7):e2003232024. doi: 10.1523/JNEUROSCI.2003-23.2024.
3
Three-dimensional-printed headcap with embedded microdrive system for customizable multi-region brain recordings with neural probes.
Front Neurosci. 2024 Oct 17;18:1478421. doi: 10.3389/fnins.2024.1478421. eCollection 2024.
5
recordings in freely behaving mice using independent silicon probes targeting multiple brain regions.
Front Neural Circuits. 2023 Dec 22;17:1293620. doi: 10.3389/fncir.2023.1293620. eCollection 2023.
6
Rhythmic oscillations in the midbrain dopaminergic nuclei in mice.
Front Cell Neurosci. 2023 Jun 23;17:1131313. doi: 10.3389/fncel.2023.1131313. eCollection 2023.
7
Development of a synchronous recording and photo-stimulating electrode in multiple brain neurons.
Front Neurosci. 2023 Jun 13;17:1195095. doi: 10.3389/fnins.2023.1195095. eCollection 2023.
9
A Novel 3D-Printed Multi-Drive System for Synchronous Electrophysiological Recording in Multiple Brain Regions.
Front Neurosci. 2019 Dec 13;13:1322. doi: 10.3389/fnins.2019.01322. eCollection 2019.
10
Reconfigurable 3D-Printed headplates for reproducible and rapid implantation of EEG, EMG and depth electrodes in mice.
J Neurosci Methods. 2020 Mar 1;333:108566. doi: 10.1016/j.jneumeth.2019.108566. Epub 2019 Dec 20.

本文引用的文献

2
Coordination of entorhinal-hippocampal ensemble activity during associative learning.
Nature. 2014 Jun 5;510(7503):143-7. doi: 10.1038/nature13162. Epub 2014 Apr 16.
5
Histological and biomechanical analysis of porous additive manufactured implants made by direct metal laser sintering: a pilot study in sheep.
J Biomed Mater Res B Appl Biomater. 2013 Oct;101(7):1154-63. doi: 10.1002/jbm.b.32925. Epub 2013 Apr 6.
7
Micro-drive array for chronic in vivo recording: drive fabrication.
J Vis Exp. 2009 Apr 20(26):1094. doi: 10.3791/1094.
8
Large-scale chronically implantable precision motorized microdrive array for freely behaving animals.
J Neurophysiol. 2008 Oct;100(4):2430-40. doi: 10.1152/jn.90687.2008. Epub 2008 Jul 30.
9
Learning-related facilitation of rhinal interactions by medial prefrontal inputs.
J Neurosci. 2007 Jun 13;27(24):6542-51. doi: 10.1523/JNEUROSCI.1077-07.2007.
10
A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals.
J Neurosci Methods. 2007 May 15;162(1-2):129-38. doi: 10.1016/j.jneumeth.2006.12.016. Epub 2007 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验