Suppr超能文献

在对后髋部和大腿肌肉进行被动阻力评估时的背屈、跖屈和踝关节中立位。

Dorsiflexion, plantar-flexion, and neutral ankle positions during passive resistance assessments of the posterior hip and thigh muscles.

作者信息

Palmer Ty B, Akehi Kazuma, Thiele Ryan M, Smith Douglas B, Warren Aric J, Thompson Brennan J

机构信息

School of Health Sciences, Kent State University, OH;

出版信息

J Athl Train. 2015 May;50(5):467-74. doi: 10.4085/1062-6050-49.6.04. Epub 2015 Feb 6.

Abstract

CONTEXT

Passive straight-legged-raise (SLR) assessments have been performed with the ankle fixed in dorsiflexion (DF), plantar-flexion (PF), or neutral (NTRL) position. However, it is unclear whether ankle position contributes to differences in the passive resistance measured during an SLR assessment.

OBJECTIVE

To examine the influence of ankle position during an SLR on the passive torque, range of motion (ROM), and hamstrings electromyographic (EMG) responses to passive stretch of the posterior hip and thigh muscles.

DESIGN

Crossover study.

SETTING

Research laboratory.

PATIENTS OR OTHER PARTICIPANTS

A total of 13 healthy volunteers (5 men: age = 24 ± 3 years, height = 178 ± 6 cm, mass = 85 ± 10 kg; 8 women: age = 21 ± 1 years, height = 163 ± 8 cm, mass = 60 ± 6 kg).

INTERVENTION(S): Participants performed 6 randomly ordered passive SLR assessments involving 2 assessments at each condition, which included the ankle positioned in DF, PF, and NTRL. All SLRs were performed using an isokinetic dynamometer programmed in passive mode to move the limb toward the head at 5°/s.

MAIN OUTCOME MEASURE(S): During each SLR, maximal ROM was determined as the point of discomfort but not pain, as indicated by the participant. Passive torque and EMG amplitude were determined at 4 common joint angles (θ) separated by 5° during the final common 15° of ROM for each participant.

RESULTS

Passive torque was greater for the DF condition than the NTRL (P = .008) and PF (P = .03) conditions at θ3 and greater for the DF than NTRL condition (P = .02) at θ4. Maximal ROM was lower for the DF condition than the NTRL (P = .003) and PF (P < .001) conditions. However, we found no differences among conditions for EMG amplitude (P = .86).

CONCLUSIONS

These findings suggest that performing SLRs with the ankle positioned in DF may elicit greater passive torque and lower ROM than SLRs with the ankle positioned in PF or NTRL. The greater passive torque and lower ROM induced by the DF condition possibly were due to increased tension in the neural structures of the proximal thigh.

摘要

背景

被动直腿抬高(SLR)评估是在踝关节固定于背屈(DF)、跖屈(PF)或中立(NTRL)位时进行的。然而,尚不清楚踝关节位置是否会导致SLR评估期间测得的被动阻力存在差异。

目的

研究SLR过程中踝关节位置对被动扭矩、运动范围(ROM)以及后髋和大腿肌肉被动拉伸时腘绳肌肌电图(EMG)反应的影响。

设计

交叉研究。

地点

研究实验室。

患者或其他参与者

共13名健康志愿者(5名男性:年龄=24±3岁,身高=178±6厘米,体重=85±10千克;8名女性:年龄=21±1岁,身高=163±8厘米,体重=60±6千克)。

干预措施

参与者进行6次随机排序的被动SLR评估,每种情况进行2次评估,包括踝关节处于DF、PF和NTRL位。所有SLR均使用等速测力计以被动模式编程,使肢体以5°/秒的速度向头部移动。

主要观察指标

在每次SLR过程中,最大ROM被确定为参与者表示不适但无疼痛的点。在每个参与者ROM的最后共同15°期间,在4个相隔5°的常见关节角度(θ)处确定被动扭矩和EMG幅度。

结果

在θ3时,DF位的被动扭矩大于NTRL位(P = 0.008)和PF位(P = 0.03),在θ4时,DF位的被动扭矩大于NTRL位(P = 0.02)。DF位的最大ROM低于NTRL位(P = 0.003)和PF位(P < 0.001)。然而,我们发现各情况之间的EMG幅度无差异(P = 0.86)。

结论

这些发现表明,与踝关节处于PF或NTRL位的SLR相比,踝关节处于DF位进行SLR可能会产生更大的被动扭矩和更低的ROM。DF位引起的更大被动扭矩和更低ROM可能是由于大腿近端神经结构张力增加所致。

相似文献

2
3
Influence of stretching velocity on musculotendinous stiffness of the hamstrings during passive straight-leg raise assessments.
Musculoskelet Sci Pract. 2017 Aug;30:80-85. doi: 10.1016/j.msksp.2016.12.018. Epub 2017 Jan 5.
4
Effects of hip and head position on ankle range of motion, ankle passive torque, and passive gastrocnemius tension.
Scand J Med Sci Sports. 2016 Jan;26(1):41-7. doi: 10.1111/sms.12406. Epub 2015 Feb 12.
5
Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.
J Strength Cond Res. 2016 Sep;30(9):2482-92. doi: 10.1519/JSC.0000000000001357.
6
3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study.
J Foot Ankle Res. 2016 Nov 10;9:43. doi: 10.1186/s13047-016-0174-1. eCollection 2016.
7
Relationship between passive properties of the calf muscles and plantarflexion concentric isokinetic torque characteristics.
Eur J Appl Physiol. 2002 Jul;87(3):220-7. doi: 10.1007/s00421-002-0624-2. Epub 2002 May 4.
8
The role of mechanical and neural restraints to joint range of motion during passive stretch.
Med Sci Sports Exerc. 1998 Jun;30(6):928-32. doi: 10.1097/00005768-199806000-00023.

引用本文的文献

本文引用的文献

1
Adverse mechanical tension in the nervous system: a model for assessment and treatment.
Aust J Physiother. 1989;35(4):227-38. doi: 10.1016/S0004-9514(14)60511-0.
3
5
The relationship between passive stiffness and evoked twitch properties: the influence of muscle CSA normalization.
Physiol Meas. 2011 Jun;32(6):677-86. doi: 10.1088/0967-3334/32/6/005. Epub 2011 May 12.
6
Effects of two modes of static stretching on muscle strength and stiffness.
Med Sci Sports Exerc. 2011 Sep;43(9):1777-84. doi: 10.1249/MSS.0b013e318215cda9.
7
The role of neural tension in hamstring flexibility.
Scand J Med Sci Sports. 2012 Apr;22(2):164-9. doi: 10.1111/j.1600-0838.2010.01180.x. Epub 2010 Aug 24.
10
What is the normal response to structural differentiation within the slump and straight leg raise tests?
Man Ther. 2008 Aug;13(4):289-94. doi: 10.1016/j.math.2007.01.013. Epub 2007 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验