Suppr超能文献

BMPR2的缺失由于成骨细胞活性增加而导致高骨量。

Loss of BMPR2 leads to high bone mass due to increased osteoblast activity.

作者信息

Lowery Jonathan W, Intini Giuseppe, Gamer Laura, Lotinun Sutada, Salazar Valerie S, Ote Satoshi, Cox Karen, Baron Roland, Rosen Vicki

机构信息

Department of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, USA Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.

Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA.

出版信息

J Cell Sci. 2015 Apr 1;128(7):1308-15. doi: 10.1242/jcs.156737. Epub 2015 Feb 6.

Abstract

Imbalances in the ratio of bone morphogenetic protein (BMP) versus activin and TGFβ signaling are increasingly associated with human diseases yet the mechanisms mediating this relationship remain unclear. The type 2 receptors ACVR2A and ACVR2B bind BMPs and activins but the type 2 receptor BMPR2 only binds BMPs, suggesting that type 2 receptor utilization might play a role in mediating the interaction of these pathways. We tested this hypothesis in the mouse skeleton, where bone mass is reciprocally regulated by BMP signaling and activin and TGFβ signaling. We found that deleting Bmpr2 in mouse skeletal progenitor cells (Bmpr2-cKO mice) selectively impaired activin signaling but had no effect on BMP signaling, resulting in an increased bone formation rate and high bone mass. Additionally, activin sequestration had no effect on bone mass in Bmpr2-cKO mice but increased bone mass in wild-type mice. Our findings suggest a novel model whereby BMPR2 availability alleviates receptor-level competition between BMPs and activins and where utilization of ACVR2A and ACVR2B by BMPs comes at the expense of activins. As BMP and activin pathway modulation are of current therapeutic interest, our findings provide important mechanistic insight into the relationship between these pathways in human health.

摘要

骨形态发生蛋白(BMP)与激活素及转化生长因子β(TGFβ)信号传导比例失衡与人类疾病的关联日益增加,但其介导这种关系的机制仍不清楚。2型受体ACVR2A和ACVR2B可结合BMP和激活素,但2型受体BMPR2仅结合BMP,这表明2型受体的利用可能在介导这些信号通路的相互作用中发挥作用。我们在小鼠骨骼中验证了这一假设,在小鼠骨骼中,骨量受BMP信号传导以及激活素和TGFβ信号传导的反向调节。我们发现,在小鼠骨骼祖细胞中敲除Bmpr2(Bmpr2基因条件性敲除小鼠)会选择性损害激活素信号传导,但对BMP信号传导无影响,导致骨形成率增加和骨量升高。此外,激活素隔离对Bmpr2基因条件性敲除小鼠的骨量没有影响,但会增加野生型小鼠的骨量。我们的研究结果提示了一种新模型,即BMPR2的可利用性减轻了BMP与激活素之间受体水平的竞争,且BMP对ACVR2A和ACVR2B的利用是以牺牲激活素为代价的。由于BMP和激活素信号通路调节是当前治疗关注的焦点,我们的研究结果为这些信号通路在人类健康中的关系提供了重要的机制性见解。

相似文献

1
Loss of BMPR2 leads to high bone mass due to increased osteoblast activity.
J Cell Sci. 2015 Apr 1;128(7):1308-15. doi: 10.1242/jcs.156737. Epub 2015 Feb 6.
2
Activins bind and signal via bone morphogenetic protein receptor type II (BMPR2) in immortalized gonadotrope-like cells.
Cell Signal. 2013 Dec;25(12):2717-26. doi: 10.1016/j.cellsig.2013.09.002. Epub 2013 Sep 7.
3
BMPR2 inhibits activin and BMP signaling via wild-type ALK2.
J Cell Sci. 2018 Jun 11;131(11):jcs213512. doi: 10.1242/jcs.213512.
4
Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B.
Cell Commun Signal. 2015 Jun 6;13:27. doi: 10.1186/s12964-015-0104-z.
5
BMPR-II is dispensable for formation of the limb skeleton.
Genesis. 2011 Sep;49(9):719-24. doi: 10.1002/dvg.20761. Epub 2011 Aug 19.
7
Insight into Molecular Mechanism for Activin A-Induced Bone Morphogenetic Protein Signaling.
Int J Mol Sci. 2020 Sep 5;21(18):6498. doi: 10.3390/ijms21186498.
8
Murine FSH Production Depends on the Activin Type II Receptors ACVR2A and ACVR2B.
Endocrinology. 2020 Jul 1;161(7). doi: 10.1210/endocr/bqaa056.

引用本文的文献

1
Andrographolide suppresses fibrogenic phenotype of chondrocytes and ameliorates osteoarthritis by regulating miR-137/BMP7 axis.
J Orthop. 2024 Nov 26;64:108-116. doi: 10.1016/j.jor.2024.11.019. eCollection 2025 Jun.
2
Metabolic reprogramming in skeletal cell differentiation.
Bone Res. 2024 Oct 11;12(1):57. doi: 10.1038/s41413-024-00374-0.
3
The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease.
Cell Res. 2024 Feb;34(2):101-123. doi: 10.1038/s41422-023-00918-9. Epub 2024 Jan 24.
5
FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells.
Cell Commun Signal. 2023 Jan 30;21(1):25. doi: 10.1186/s12964-022-01033-9.
6
Variants Underlie Nonsyndromic Oligodontia.
Int J Mol Sci. 2023 Jan 13;24(2):1648. doi: 10.3390/ijms24021648.
7
Functional comparison of human ACVR1 and zebrafish Acvr1l FOP-associated variants in embryonic zebrafish.
Dev Dyn. 2023 May;252(5):605-628. doi: 10.1002/dvdy.566. Epub 2023 Jan 26.
9
The context-dependent, combinatorial logic of BMP signaling.
Cell Syst. 2022 May 18;13(5):388-407.e10. doi: 10.1016/j.cels.2022.03.002. Epub 2022 Apr 13.

本文引用的文献

1
Lung remodeling in a mouse model of asthma involves a balance between TGF-β1 and BMP-7.
PLoS One. 2014 Apr 29;9(4):e95959. doi: 10.1371/journal.pone.0095959. eCollection 2014.
3
A myostatin and activin decoy receptor enhances bone formation in mice.
Bone. 2014 Mar;60:162-71. doi: 10.1016/j.bone.2013.12.002. Epub 2013 Dec 9.
4
The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass.
J Cell Biol. 2013 Oct 28;203(2):345-57. doi: 10.1083/jcb.201211134. Epub 2013 Oct 21.
5
BMP signaling controls muscle mass.
Nat Genet. 2013 Nov;45(11):1309-18. doi: 10.1038/ng.2772. Epub 2013 Sep 29.
7
Transdifferentiation of alveolar epithelial type II to type I cells is controlled by opposing TGF-β and BMP signaling.
Am J Physiol Lung Cell Mol Physiol. 2013 Sep 15;305(6):L409-18. doi: 10.1152/ajplung.00032.2013. Epub 2013 Jul 5.
9
Basolateral BMP signaling in polarized epithelial cells.
PLoS One. 2013 May 13;8(5):e62659. doi: 10.1371/journal.pone.0062659. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验