Suppr超能文献

无需估计源数量的混合远场和近场源的被动定位

Passive localization of mixed far-field and near-field sources without estimating the number of sources.

作者信息

Xie Jian, Tao Haihong, Rao Xuan, Su Jia

机构信息

National Key Laboratory for Radar Signal Processing, School of Electronic Engineering, Xidian University, No.2 Taibai South Road, Xi'an 710071, China.

出版信息

Sensors (Basel). 2015 Feb 6;15(2):3834-53. doi: 10.3390/s150203834.

Abstract

This paper presents a novel algorithm for the localization of mixed far-field sources (FFSs) and near-field sources (NFSs) without estimating the source number. Firstly, the algorithm decouples the direction-of-arrival (DOA) estimation from the range estimation by exploiting fourth-order spatial-temporal cumulants of the observed data. Based on the joint diagonalization structure of multiple spatial-temporal cumulant matrices, a new one-dimensional (1-D) spatial spectrum function is derived to generate the DOA estimates of both FFSs and NFSs. Then, the FFSs and NFSs are identified and the range parameters of NFSs are determined via beamforming technique. Compared with traditional mixed sources localization algorithms, the proposed algorithm avoids the performance deterioration induced by erroneous source number estimation. Furthermore, it has a higher resolution capability and improves the estimation accuracy. Computer simulations are implemented to verify the effectiveness of the proposed algorithm.

摘要

本文提出了一种用于混合远场源(FFS)和近场源(NFS)定位的新型算法,无需估计源的数量。首先,该算法通过利用观测数据的四阶时空累积量,将到达方向(DOA)估计与距离估计解耦。基于多个时空累积量矩阵的联合对角化结构,推导了一种新的一维(1-D)空间谱函数,以生成FFS和NFS的DOA估计。然后,通过波束形成技术识别FFS和NFS,并确定NFS的距离参数。与传统的混合源定位算法相比,该算法避免了因错误的源数量估计而导致的性能下降。此外,它具有更高的分辨率能力并提高了估计精度。通过计算机仿真验证了所提算法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc8/4367388/4f7228ecfed1/sensors-15-03834f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验