Willow Soohaeng Yoo, Zhang Jinmei, Valeev Edward F, Hirata So
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
J Chem Phys. 2014 Jan 21;140(3):031101. doi: 10.1063/1.4862255.
A stochastic algorithm is proposed that can compute the basis-set-incompleteness correction to the second-order many-body perturbation (MP2) energy of a polyatomic molecule. It evaluates the sum of two-, three-, and four-electron integrals over an explicit function of electron-electron distances by a Monte Carlo (MC) integration at an operation cost per MC step increasing only quadratically with size. The method can reproduce the corrections to the MP2/cc-pVTZ energies of H2O, CH4, and C6H6 within a few mEh after several million MC steps. It circumvents the resolution-of-the-identity approximation to the nonfactorable three-electron integrals usually necessary in the conventional explicitly correlated (R12 or F12) methods.
提出了一种随机算法,该算法可计算多原子分子二阶多体微扰(MP2)能量的基组不完备性校正。它通过蒙特卡罗(MC)积分来评估电子-电子距离显式函数上的双电子、三电子和四电子积分之和,每个MC步的运算成本仅随体系大小呈二次方增加。经过数百万个MC步后,该方法能够在几毫哈特里(mEh)的精度内重现对H2O、CH4和C6H6的MP2/cc-pVTZ能量的校正。它规避了传统显式相关(R12或F12)方法中通常对不可分解三电子积分所必需的单位分解近似。