Suppr超能文献

呼吸神经活动的间歇性减少会引发脊髓肿瘤坏死因子-α非依赖性、非典型蛋白激酶C依赖性的静止诱导膈神经运动易化。

Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation.

作者信息

Baertsch Nathan A, Baker-Herman Tracy L

机构信息

Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.

Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin

出版信息

Am J Physiol Regul Integr Comp Physiol. 2015 Apr 15;308(8):R700-7. doi: 10.1152/ajpregu.00359.2014. Epub 2015 Feb 11.

Abstract

In many neural networks, mechanisms of compensatory plasticity respond to prolonged reductions in neural activity by increasing cellular excitability or synaptic strength. In the respiratory control system, a prolonged reduction in synaptic inputs to the phrenic motor pool elicits a TNF-α- and atypical PKC-dependent form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although iPMF may be elicited by a prolonged reduction in respiratory neural activity, iPMF is more efficiently induced when reduced respiratory neural activity (neural apnea) occurs intermittently. Mechanisms giving rise to iPMF following intermittent neural apnea are unknown. The purpose of this study was to test the hypothesis that iPMF following intermittent reductions in respiratory neural activity requires spinal TNF-α and aPKC. Phrenic motor output was recorded in anesthetized and ventilated rats exposed to brief intermittent (5, ∼1.25 min), brief sustained (∼6.25 min), or prolonged sustained (30 min) neural apnea. iPMF was elicited following brief intermittent and prolonged sustained neural apnea, but not following brief sustained neural apnea. Unlike iPMF following prolonged neural apnea, spinal TNF-α was not required to initiate iPMF during intermittent neural apnea; however, aPKC was still required for its stabilization. These results suggest that different patterns of respiratory neural activity induce iPMF through distinct cellular mechanisms but ultimately converge on a similar downstream pathway. Understanding the diverse cellular mechanisms that give rise to inactivity-induced respiratory plasticity may lead to development of novel therapeutic strategies to treat devastating respiratory control disorders when endogenous compensatory mechanisms fail.

摘要

在许多神经网络中,代偿性可塑性机制会通过增加细胞兴奋性或突触强度来应对神经活动的长期减少。在呼吸控制系统中,膈神经运动池突触输入的长期减少会引发一种依赖肿瘤坏死因子-α(TNF-α)和非典型蛋白激酶C(aPKC)的脊髓可塑性形式,即失用性膈神经运动易化(iPMF)。尽管iPMF可能由呼吸神经活动的长期减少引发,但当呼吸神经活动减少(神经呼吸暂停)间歇性发生时,iPMF能更有效地被诱导。间歇性神经呼吸暂停后引发iPMF的机制尚不清楚。本研究的目的是检验以下假设:间歇性呼吸神经活动减少后的iPMF需要脊髓TNF-α和aPKC。在暴露于短暂间歇性(5次,每次约1.25分钟)、短暂持续性(约6.25分钟)或长期持续性(30分钟)神经呼吸暂停的麻醉通气大鼠中记录膈神经运动输出。短暂间歇性和长期持续性神经呼吸暂停后会引发iPMF,但短暂持续性神经呼吸暂停后不会引发。与长期神经呼吸暂停后的iPMF不同,间歇性神经呼吸暂停期间启动iPMF不需要脊髓TNF-α;然而,aPKC对其稳定仍必不可少。这些结果表明,不同模式的呼吸神经活动通过不同的细胞机制诱导iPMF,但最终汇聚到相似的下游途径。了解引发失用性呼吸可塑性的多种细胞机制,可能会在内在代偿机制失效时,促成治疗严重呼吸控制障碍的新型治疗策略的开发。

相似文献

1
Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation.
Am J Physiol Regul Integr Comp Physiol. 2015 Apr 15;308(8):R700-7. doi: 10.1152/ajpregu.00359.2014. Epub 2015 Feb 11.
2
Intermittent apnea elicits inactivity-induced phrenic motor facilitation via a retinoic acid- and protein synthesis-dependent pathway.
J Neurophysiol. 2017 Nov 1;118(5):2702-2710. doi: 10.1152/jn.00212.2017. Epub 2017 Aug 16.
3
Inactivity-induced phrenic motor facilitation requires PKCζ activity within phrenic motor neurons.
J Neurophysiol. 2024 Jun 1;131(6):1188-1199. doi: 10.1152/jn.00138.2024. Epub 2024 May 1.
4
Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats.
J Appl Physiol (1985). 2014 Oct 1;117(7):682-93. doi: 10.1152/japplphysiol.00342.2014. Epub 2014 Aug 7.
5
Spinal TNF is necessary for inactivity-induced phrenic motor facilitation.
J Physiol. 2013 Nov 15;591(22):5585-98. doi: 10.1113/jphysiol.2013.256644. Epub 2013 Jul 22.
6
Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation.
J Neurosci. 2012 Nov 14;32(46):16510-20. doi: 10.1523/JNEUROSCI.2631-12.2012.
7
Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.
Exp Neurol. 2014 Jun;256:46-56. doi: 10.1016/j.expneurol.2014.03.007. Epub 2014 Mar 25.
8
Reduced respiratory neural activity elicits a long-lasting decrease in the CO threshold for apnea in anesthetized rats.
Exp Neurol. 2017 Jan;287(Pt 2):235-242. doi: 10.1016/j.expneurol.2016.07.020. Epub 2016 Jul 26.
9
Inactivity-induced phrenic and hypoglossal motor facilitation are differentially expressed following intermittent vs. sustained neural apnea.
J Appl Physiol (1985). 2013 May 15;114(10):1388-95. doi: 10.1152/japplphysiol.00018.2013. Epub 2013 Mar 14.
10
Retinoic acid receptor alpha activation is necessary and sufficient for plasticity induced by recurrent central apnea.
J Appl Physiol (1985). 2021 Mar 1;130(3):836-845. doi: 10.1152/japplphysiol.00287.2020. Epub 2021 Jan 7.

引用本文的文献

2
Inactivity-induced phrenic motor facilitation requires PKCζ activity within phrenic motor neurons.
J Neurophysiol. 2024 Jun 1;131(6):1188-1199. doi: 10.1152/jn.00138.2024. Epub 2024 May 1.
4
Baseline Arterial CO Pressure Regulates Acute Intermittent Hypoxia-Induced Phrenic Long-Term Facilitation in Rats.
Front Physiol. 2021 Feb 24;12:573385. doi: 10.3389/fphys.2021.573385. eCollection 2021.
5
Competing mechanisms of plasticity impair compensatory responses to repetitive apnoea.
J Physiol. 2019 Aug;597(15):3951-3967. doi: 10.1113/JP277676. Epub 2019 Jul 7.
6
Spinal BDNF-induced phrenic motor facilitation requires PKCθ activity.
J Neurophysiol. 2017 Nov 1;118(5):2755-2762. doi: 10.1152/jn.00945.2016. Epub 2017 Aug 30.
7
Intermittent apnea elicits inactivity-induced phrenic motor facilitation via a retinoic acid- and protein synthesis-dependent pathway.
J Neurophysiol. 2017 Nov 1;118(5):2702-2710. doi: 10.1152/jn.00212.2017. Epub 2017 Aug 16.
8
Reduced respiratory neural activity elicits a long-lasting decrease in the CO threshold for apnea in anesthetized rats.
Exp Neurol. 2017 Jan;287(Pt 2):235-242. doi: 10.1016/j.expneurol.2016.07.020. Epub 2016 Jul 26.
9
Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control?
Exp Neurol. 2017 Jan;287(Pt 2):225-234. doi: 10.1016/j.expneurol.2016.07.012. Epub 2016 Jul 22.

本文引用的文献

1
Sleep and breathing in congestive heart failure.
Clin Chest Med. 2014 Sep;35(3):521-34. doi: 10.1016/j.ccm.2014.06.008. Epub 2014 Jul 26.
2
Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats.
J Appl Physiol (1985). 2014 Oct 1;117(7):682-93. doi: 10.1152/japplphysiol.00342.2014. Epub 2014 Aug 7.
3
Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.
Exp Neurol. 2014 Jun;256:46-56. doi: 10.1016/j.expneurol.2014.03.007. Epub 2014 Mar 25.
4
Spinal TNF is necessary for inactivity-induced phrenic motor facilitation.
J Physiol. 2013 Nov 15;591(22):5585-98. doi: 10.1113/jphysiol.2013.256644. Epub 2013 Jul 22.
5
Inactivity-induced respiratory plasticity: protecting the drive to breathe in disorders that reduce respiratory neural activity.
Respir Physiol Neurobiol. 2013 Nov 1;189(2):384-94. doi: 10.1016/j.resp.2013.06.023. Epub 2013 Jun 28.
6
Neuroimmune regulation of homeostatic synaptic plasticity.
Neuropharmacology. 2014 Mar;78:13-22. doi: 10.1016/j.neuropharm.2013.06.008. Epub 2013 Jun 15.
7
Homeostatic synaptic plasticity in developing spinal networks driven by excitatory GABAergic currents.
Neuropharmacology. 2014 Mar;78:55-62. doi: 10.1016/j.neuropharm.2013.04.058. Epub 2013 May 29.
8
Apnea of prematurity--perfect storm.
Respir Physiol Neurobiol. 2013 Nov 1;189(2):213-22. doi: 10.1016/j.resp.2013.05.026. Epub 2013 May 28.
9
Central sleep apnea.
Compr Physiol. 2013 Jan;3(1):141-63. doi: 10.1002/cphy.c110057.
10
Hypoxia-induced phrenic long-term facilitation: emergent properties.
Ann N Y Acad Sci. 2013 Mar;1279:143-53. doi: 10.1111/nyas.12085.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验