Suppr超能文献

分形晶格上量子伊辛模型的量子临界行为。

Quantum critical behavior of the quantum Ising model on fractal lattices.

作者信息

Yi Hangmo

机构信息

Department of Physics, Soongsil University, Seoul 156-743, Korea and Institute for Integrative Basic Sciences, Soongsil University, Seoul 156-743, Korea.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012118. doi: 10.1103/PhysRevE.91.012118. Epub 2015 Jan 9.

Abstract

I study the properties of the quantum critical point of the transverse-field quantum Ising model on various fractal lattices such as the Sierpiński carpet, Sierpiński gasket, and Sierpiński tetrahedron. Using a continuous-time quantum Monte Carlo simulation method and finite-size scaling analysis, I identify the quantum critical point and investigate its scaling properties. Among others, I calculate the dynamic critical exponent and find that it is greater than one for all three structures. The fact that it deviates from one is a direct consequence of the fractal structures not being integer-dimensional regular lattices. Other critical exponents are also calculated. The exponents are different from those of the classical critical point and satisfy the quantum scaling relation, thus confirming that I have indeed found the quantum critical point. I find that the Sierpiński tetrahedron, of which the dimension is exactly 2, belongs to a different universality class than that of the two-dimensional square lattice. I conclude that the critical exponents depend on more details of the structure than just the dimension and the symmetry.

摘要

我研究了横场量子伊辛模型在各种分形晶格(如谢尔宾斯基地毯、谢尔宾斯基垫圈和谢尔宾斯基四面体)上的量子临界点性质。通过使用连续时间量子蒙特卡罗模拟方法和有限尺寸标度分析,我确定了量子临界点并研究了其标度性质。其中,我计算了动态临界指数,发现对于所有这三种结构,该指数都大于1。其偏离1这一事实是分形结构不是整数维规则晶格的直接结果。还计算了其他临界指数。这些指数不同于经典临界点的指数,并满足量子标度关系,从而证实我确实找到了量子临界点。我发现维度恰好为2的谢尔宾斯基四面体属于与二维正方形晶格不同的普适类。我得出结论,临界指数取决于结构的更多细节,而不仅仅是维度和对称性。

相似文献

1
Quantum critical behavior of the quantum Ising model on fractal lattices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012118. doi: 10.1103/PhysRevE.91.012118. Epub 2015 Jan 9.
2
Critical behavior of the quantum Ising model on a fractal structure.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):014105. doi: 10.1103/PhysRevE.88.014105. Epub 2013 Jul 29.
4
Stationary and dynamic critical behavior of the contact process on the Sierpinski carpet.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052137. doi: 10.1103/PhysRevE.91.052137. Epub 2015 May 22.
5
Cluster Monte Carlo simulation of the transverse Ising model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 2):066110. doi: 10.1103/PhysRevE.66.066110. Epub 2002 Dec 10.
6
Absorbing phase transition in conserved lattice gas model on fractal lattices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031137. doi: 10.1103/PhysRevE.76.031137. Epub 2007 Sep 27.
7
Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012146. doi: 10.1103/PhysRevE.91.012146. Epub 2015 Jan 28.
8
Majority-vote model on hyperbolic lattices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011133. doi: 10.1103/PhysRevE.81.011133. Epub 2010 Jan 26.
9
First- and second-order quantum phase transitions of a q-state Potts model in fractal lattices.
Phys Rev E. 2017 Dec;96(6-1):062105. doi: 10.1103/PhysRevE.96.062105. Epub 2017 Dec 5.
10
Universality split in absorbing phase transition with conserved field on fractal lattices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041122. doi: 10.1103/PhysRevE.77.041122. Epub 2008 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验