Hijano A J, Loscertales I G, Ibáñez S E, Higuera F J
Andalucía Tech, Escuela Técnica Superior de Ingeniería Industrial, Universidad de Málaga, 29071 Málaga, Spain.
Escuela Técnica Superior de Ingenieros Aeronáuticos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):013011. doi: 10.1103/PhysRevE.91.013011. Epub 2015 Jan 20.
The generation of identical droplets of controllable size in the micrometer range is a problem of much interest owing to the numerous technological applications of such droplets. This work reports an investigation of the regime of periodic emission of droplets from an electrified oscillating meniscus of a liquid of low viscosity and high electrical conductivity attached to the end of a capillary tube, which may be used to produce droplets more than ten times smaller than the diameter of the tube. To attain this periodic microdripping regime, termed axial spray mode II by Juraschek and Röllgen [R. Juraschek and F. W. Röllgen, Int. J. Mass Spectrom. 177, 1 (1998)], liquid is continuously supplied through the tube at a given constant flow rate, while a dc voltage is applied between the tube and a nearby counter electrode. The resulting electric field induces a stress at the surface of the liquid that stretches the meniscus until, in certain ranges of voltage and flow rate, it develops a ligament that eventually detaches, forming a single droplet, in a process that repeats itself periodically. While it is being stretched, the ligament develops a conical tip that emits ultrafine droplets, but the total mass emitted is practically contained in the main droplet. In the parametrical domain studied, we find that the process depends on two main dimensionless parameters, the flow rate nondimensionalized with the diameter of the tube and the capillary time, q, and the electric Bond number B(E), which is a nondimensional measure of the square of the applied voltage. The meniscus oscillation frequency made nondimensional with the capillary time, f, is of order unity for very small flow rates and tends to decrease as the inverse of the square root of q for larger values of this parameter. The product of the meniscus mean volume times the oscillation frequency is nearly constant. The characteristic length and width of the liquid ligament immediately before its detachment approximately scale as powers of the flow rate and depend only weakly on the applied voltage. The diameter of the main droplets nondimensionalized with the diameter of the tube satisfies d(d)≈(6/π)(1/3)(q/f)(1/3), from mass conservation, while the electric charge of these droplets is about 1/4 of the Rayleigh charge. At the minimum flow rate compatible with the periodic regimen, the dimensionless diameter of the droplets is smaller than one-tenth, which presents a way to use electrohydrodynamic atomization to generate droplets of highly conducting liquids in the micron-size range, in marked contrast with the cone-jet electrospray whose typical droplet size is in the nanometric regime for these liquids. In contrast with other microdripping regimes where the mass is emitted upon the periodic formation of a narrow capillary jet, the present regime gives one single droplet per oscillation, except for the almost massless fine aerosol emitted in the form of an electrospray.
由于这种微米级可控大小的相同液滴在众多技术应用中具有重要价值,因此生成此类液滴成为一个备受关注的问题。本文报道了一项关于从附着在毛细管末端的低粘度、高电导率液体的带电振荡弯月面周期性发射液滴机制的研究,该机制可用于产生比毛细管直径小十余倍的液滴。为实现这种被Juraschek和Röllgen [R. Juraschek和F. W. Röllgen, Int. J. Mass Spectrom. 177, 1 (1998)] 称为轴向喷雾模式II的周期性微滴喷射机制,液体以给定的恒定流速持续通过毛细管供应,同时在毛细管与附近的对电极之间施加直流电压。由此产生的电场在液体表面诱导出一种应力,该应力拉伸弯月面,直到在特定的电压和流速范围内,形成一条液柱,最终液柱分离,形成单个液滴,此过程周期性重复。在拉伸过程中,液柱会形成一个锥形尖端,该尖端会发射超细液滴,但发射的总质量实际上包含在主液滴中。在所研究的参数域中,我们发现该过程取决于两个主要的无量纲参数,一个是用毛细管直径和毛细管时间无量纲化的流速q,另一个是电邦德数B(E),它是施加电压平方的无量纲度量。用毛细管时间无量纲化的弯月面振荡频率f,在流速非常小时约为1,并随着该参数较大值时q的平方根的倒数而减小。弯月面平均体积与振荡频率的乘积几乎是恒定的。即将分离前液体液柱的特征长度和宽度大致与流速的幂成正比,并且仅微弱地依赖于施加的电压。用毛细管直径无量纲化的主液滴直径满足d(d)≈(6/π)(1/3)(q/f)(1/3),这是根据质量守恒得出的,而这些液滴的电荷约为瑞利电荷的1/4。在与周期性状态兼容的最小流速下,液滴的无量纲直径小于十分之一,这提供了一种利用电流体动力学雾化来生成微米级高导电液体液滴的方法,这与锥射流电喷雾形成显著对比,对于这些液体,锥射流电喷雾的典型液滴尺寸处于纳米级。与其他微滴喷射机制不同,在其他机制中,质量是在周期性形成狭窄毛细管射流时发射的,而当前机制每次振荡产生一个单一液滴,除了以电喷雾形式发射的几乎无质量的细气溶胶。