Gollapudi Sampath K, Tardiff Jil C, Chandra Murali
Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington; and.
Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona.
Am J Physiol Heart Circ Physiol. 2015 Apr 15;308(8):H884-93. doi: 10.1152/ajpheart.00528.2014. Epub 2015 Feb 13.
Given the differential impact of α- and β-myosin heavy chain (MHC) isoforms on how troponin T (TnT) modulates contractile dynamics, we hypothesized that the effects of dilated cardiomyopathy (DCM) mutations in TnT would be altered differently by α- and β-MHC. We characterized dynamic contractile features of normal (α-MHC) and transgenic (β-MHC) mouse cardiac muscle fibers reconstituted with a mouse TnT analog (TnTR144W) of the human DCM R141W mutation. TnTR144W did not alter maximal tension but attenuated myofilament Ca(2+) sensitivity (pCa50) to a similar extent in α- and β-MHC fibers. TnTR144W attenuated the speed of cross-bridge (XB) distortion dynamics (c) by 24% and the speed of XB recruitment dynamics (b) by 17% in α-MHC fibers; however, both b and c remained unaltered in β-MHC fibers. Likewise, TnTR144W attenuated the rates of XB detachment (g) and tension redevelopment (ktr) only in α-MHC fibers. TnTR144W also decreased the impact of strained XBs on the recruitment of new XBs (γ) by 30% only in α-MHC fibers. Because c, b, g, ktr, and γ are strongly influenced by thin filament-based cooperative mechanisms, we conclude that the TnTR144W- and β-MHC-mediated changes in the thin filament interact to produce a less severe functional phenotype, compared with that brought about by TnTR144W and α-MHC. These observations provide a basis for lower mortality rates of humans (β-MHC) harboring the TnTR141W mutant compared with transgenic mouse studies. Our findings strongly suggest that some caution is necessary when extrapolating data from transgenic mouse studies to human hearts.
鉴于α-和β-肌球蛋白重链(MHC)同工型对肌钙蛋白T(TnT)调节收缩动力学方式的不同影响,我们推测扩张型心肌病(DCM)中TnT的突变效应会因α-和β-MHC而发生不同改变。我们对用人类DCM R141W突变的小鼠TnT类似物(TnTR144W)重构的正常(α-MHC)和转基因(β-MHC)小鼠心肌纤维的动态收缩特征进行了表征。TnTR144W并未改变最大张力,但在α-和β-MHC纤维中同等程度地减弱了肌丝Ca(2+)敏感性(pCa50)。TnTR144W使α-MHC纤维中横桥(XB)变形动力学速度(c)降低了24%,使XB募集动力学速度(b)降低了17%;然而,β-MHC纤维中的b和c均未改变。同样,TnTR144W仅在α-MHC纤维中减弱了XB解离速率(g)和张力重建速率(ktr)。TnTR144W还仅在α-MHC纤维中使受应变的XB对新XB募集的影响(γ)降低了30%。由于c、b、g、ktr和γ受基于细肌丝的协同机制强烈影响,我们得出结论,与TnTR144W和α-MHC相比,TnTR144W和β-MHC介导的细肌丝变化相互作用产生的功能表型较轻。这些观察结果为携带TnTR141W突变的人类(β-MHC)与转基因小鼠研究相比死亡率较低提供了依据。我们的研究结果强烈表明,将转基因小鼠研究数据外推至人类心脏时需要谨慎。