Suppr超能文献

稳定同位素和氧化铁矿物产品作为化学反硝化的示踪剂。

Stable isotopes and iron oxide mineral products as markers of chemodenitrification.

机构信息

Department of Earth System Sciences, Stanford University, 473 Via Ortega, Room 140, Stanford, California 94305, United States.

出版信息

Environ Sci Technol. 2015 Mar 17;49(6):3444-52. doi: 10.1021/es504862x. Epub 2015 Feb 26.

Abstract

When oxygen is limiting in soils and sediments, microorganisms utilize nitrate (NO3-) in respiration--through the process of denitrification--leading to the production of dinitrogen (N2) gas and trace amounts of nitrous (N2O) and nitric (NO) oxides. A chemical pathway involving reaction of ferrous iron (Fe2+) with nitrite (NO2-), an intermediate in the denitrification pathway, can also result in production of N2O. We examine the chemical reduction of NO2- by Fe(II)--chemodenitrification--in anoxic batch incubations at neutral pH. Aqueous Fe2+ and NO2- reacted rapidly, producing N2O and generating Fe(III) (hydr)oxide mineral products. Lepidocrotite and goethite, identified by synchrotron X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, were produced from initially aqueous reactants, with two-line ferrihydrite increasing in abundance later in the reaction sequence. Based on the similarity of apparent rate constants with different mineral catalysts, we propose that the chemodenitrification rate is insensitive to the type of Fe(III) (hydr)oxide. With stable isotope measurements, we reveal a narrow range of isotopic fractionation during NO2- reduction to N2O. The location of N isotopes in the linear N2O molecule, known as site preference, was also constrained to a signature range. The coexistence of Fe(III) (hydr)oxide, characteristic 15N and 18O fractionation, and N2O site preference may be used in combination to qualitatively distinguish between abiotic and biogenically emitted N2O--a finding important for determining N2O sources in natural systems.

摘要

当土壤和沉积物中的氧气受到限制时,微生物会利用硝酸盐(NO3-)进行呼吸作用——通过反硝化过程——导致产生氮气(N2)气体以及痕量的一氧化二氮(N2O)和一氧化氮(NO)氧化物。一种涉及亚铁(Fe2+)与亚硝酸盐(NO2-)反应的化学途径,亚硝酸盐是反硝化途径中的一种中间体,也会导致 N2O 的产生。我们在中性 pH 值的缺氧批量培养中研究了 NO2-与 Fe(II)的化学还原——化学反硝化作用。水相中的 Fe2+和 NO2-迅速反应,生成 N2O 并生成 Fe(III)(水合)氧化物矿物产物。通过同步加速器 X 射线衍射(XRD)和扩展 X 射线吸收精细结构(EXAFS)光谱鉴定出纤铁矿和针铁矿,它们是由最初的水相反应物生成的,随着反应序列的进行,两线水铁矿的丰度增加。基于不同矿物催化剂的表观速率常数的相似性,我们提出化学反硝化速率对 Fe(III)(水合)氧化物的类型不敏感。通过稳定同位素测量,我们揭示了 NO2-还原为 N2O 过程中同位素分馏的狭窄范围。线性 N2O 分子中 N 同位素的位置,称为位偏好,也被限制在一个特征范围内。Fe(III)(水合)氧化物、特征 15N 和 18O 分馏以及 N2O 位偏好的共存可能结合使用,以定性地区分非生物和生物排放的 N2O——这一发现对于确定自然系统中 N2O 的来源非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验