Bhatnagar R K, Berry A, Hendry A T, Jensen R A
Department of Microbiology and Cell Science, University of Florida, Gainesville 32611.
Mol Microbiol. 1989 Mar;3(3):429-35. doi: 10.1111/j.1365-2958.1989.tb00188.x.
Clinical isolates of Neisseria gonorrhoeae are commonly subject to growth inhibition by phenylpyruvate or by L-phenylalanine. A blockade of tyrosine biosynthesis is indicated since inhibition is reversed by either L-tyrosine or 4-hydroxyphenylpyruvate. Phenylalanine-resistant (PheR) and phenylalanine-sensitive (PheS) isolates both have a single 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase that is partially inhibited by L-phenylalanine (80%). However, PheS and PheR isolates differ in that the ratio of phenylpyruvate aminotransferase to 4-hydroxyphenylpyruvate aminotransferase is distinctly greater in PheS isolates than in PheR isolates. A mechanism for growth inhibition is proposed in which phenylalanine exerts two interactive effects. (i) Phenylalanine decreases precursor flow to 4-hydroxyphenylpyruvate through its controlling effect upon DAHP synthase; and (ii) phenylalanine is largely transaminated to phenylpyruvate, which saturates both aminotransferases, preventing transamination of an already limited supply of 4-hydroxyphenylpyruvate to L-tyrosine.