Johnston Robert, Rogelj Snezna, Harper Jason C, Tartis Michaelann
Materials Engineering Department, New Mexico Institute of Mining and Technology Socorro NM, 87801.
Biology Department, New Mexico Institute of Mining and Technology Socorro NM, 87801.
J Mater Chem B. 2015 Feb 14;3(6):1032-1041. doi: 10.1039/C4TB01349B.
In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to environments necessitates development of bio-nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. The ability to encapsulate various cell types in either a multi cell ( or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell-silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.
在自然界中,细胞执行各种复杂功能,如传感、催化和能量转换,这为生物技术设备的构建具有巨大潜力。然而,细胞对环境的敏感性使得有必要开发生物纳米界面,以便将细胞整合到设备中并维持其所需功能。为了开发这样一种界面,探索了一种用于在二氧化硅中全细胞封装的新型溶胶生成化学气相转液相(SG-CViL)沉积工艺。在SG-CViL中,利用原硅酸四甲酯(TMOS)的高蒸气压将二氧化硅输送到水性介质中,形成二氧化硅溶胶。然后将细胞与所得的二氧化硅溶胶混合,便于将细胞封装在二氧化硅中,同时使细胞与二氧化硅生成反应的细胞毒性产物(即甲醇)的接触最小化,并减少细胞暴露于二氧化硅缩合反应引起的压缩应力。使用SG-CVIL,用诱导型β-半乳糖苷酶系统进行工程改造的细胞被封装在二氧化硅固体中,并且在封装后29天仍保持存活和响应能力。通过调整SG-CViL参数,还实现了在哺乳动物HeLa和U87人癌细胞上的薄层二氧化硅沉积。以多细胞(或薄层(HeLa和U87细胞)方式封装各种细胞类型的能力表明,SG-CViL作为一种封装策略具有前景,可用于生成具有多种功能的细胞-二氧化硅构建体,以整合到用于传感、生物电子学、生物催化和生物燃料应用的设备中。