Bauer Johannes, Magg Sven, Wermter Stefan
University of Hamburg, Department of Informatics, Knowledge Technology, WTM, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany.
Neural Netw. 2015 May;65:44-52. doi: 10.1016/j.neunet.2015.01.004. Epub 2015 Feb 2.
Top-down cognitive processes affect the way bottom-up cross-sensory stimuli are integrated. In this paper, we therefore extend a successful previous neural network model of learning multisensory integration in the superior colliculus (SC) by top-down, attentional input and train it on different classes of cross-modal stimuli. The network not only learns to integrate cross-modal stimuli, but the model also reproduces neurons specializing in different combinations of modalities as well as behavioral and neurophysiological phenomena associated with spatial and feature-based attention. Importantly, we do not provide the model with any information about which input neurons are sensory and which are attentional. If the basic mechanisms of our model-self-organized learning of input statistics and divisive normalization-play a major role in the ontogenesis of the SC, then this work shows that these mechanisms suffice to explain a wide range of aspects both of bottom-up multisensory integration and the top-down influence on multisensory integration.
自上而下的认知过程会影响自下而上的跨感觉刺激的整合方式。因此,在本文中,我们扩展了先前一个成功的神经网络模型,该模型通过自上而下的注意力输入来学习上丘(SC)中的多感觉整合,并在不同类别的跨模态刺激上对其进行训练。该网络不仅学会了整合跨模态刺激,而且该模型还再现了专门处理不同模态组合的神经元,以及与基于空间和特征的注意力相关的行为和神经生理现象。重要的是,我们没有向模型提供任何关于哪些输入神经元是感觉性的以及哪些是注意力性的信息。如果我们模型的基本机制——输入统计的自组织学习和归一化抑制——在SC的个体发生中起主要作用,那么这项工作表明这些机制足以解释自下而上的多感觉整合以及自上而下对多感觉整合影响的广泛方面。