Faklaris Orestis, Cottet Martin, Falco Amandine, Villier Brice, Laget Michel, Zwier Jurriaan M, Trinquet Eric, Mouillac Bernard, Pin Jean-Philippe, Durroux Thierry
*Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France.
*Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France
FASEB J. 2015 Jun;29(6):2235-46. doi: 10.1096/fj.14-260059. Epub 2015 Feb 17.
Identifying the interacting partners and the dynamics of the molecular networks constitutes the key point in understanding cellular processes. Different methods often based on energy transfer strategies have been developed to examine the molecular dynamics of protein complexes. However, these methods suffer a couple of drawbacks: a single complex can be studied at a time, and its localization and tracking cannot generally be investigated. Here, we report a multicolor time-resolved Förster resonance energy transfer microscopy method that allows the identification of up to 3 different complexes simultaneously, their localization in cells, and their tracking after activation. Using this technique, we studied GPCR oligomerization and internalization in human embryonic kidney 293 cells. We definitively show that receptors can internalize as oligomers and that receptor coexpression deeply impacts oligomer internalization processes.
识别相互作用的伙伴以及分子网络的动态变化是理解细胞过程的关键所在。人们已经开发出了多种通常基于能量转移策略的方法来检测蛋白质复合物的分子动力学。然而,这些方法存在一些缺点:一次只能研究一个复合物,并且通常无法对其定位和追踪进行研究。在此,我们报告了一种多色时间分辨荧光共振能量转移显微镜方法,该方法能够同时鉴定多达3种不同的复合物,确定它们在细胞中的定位,并在激活后对其进行追踪。利用这项技术,我们研究了人胚肾293细胞中GPCR的寡聚化和内化过程。我们明确表明,受体可以以寡聚体形式内化,并且受体共表达会深刻影响寡聚体内化过程。