Bock David C, Tappero Ryan V, Takeuchi Kenneth J, Marschilok Amy C, Takeuchi Esther S
Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.
ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5429-37. doi: 10.1021/am509066n. Epub 2015 Feb 24.
Cathode solubility in batteries can lead to decreased and unpredictable long-term battery behavior due to transition metal deposition on the negative electrode such that it no longer supports high current. Analysis of negative electrodes from cells containing vanadium oxide or phosphorus oxide based cathode systems retrieved after long-term testing was conducted. This report demonstrates the use of synchrotron based X-ray microfluorescence (XRμF) to map negative battery electrodes in conjunction with microbeam X-ray absorption spectroscopy (μXAS) to determine the oxidation states of the metal centers resident in the solid electrolyte interphase (SEI) and at the electrode surface. Based on the empirical findings, a conceptual model for the location of metal ions in the SEI and their role in impacting lithium ion mobility at the electrode surfaces is proposed.
电池中阴极的溶解性会导致长期电池性能下降且不可预测,这是由于过渡金属沉积在负极上,使其不再支持高电流。对经过长期测试后回收的含有基于氧化钒或氧化磷阴极系统的电池负极进行了分析。本报告展示了基于同步加速器的X射线微荧光(XRμF)用于绘制电池负极图,并结合微束X射线吸收光谱(μXAS)来确定固体电解质界面(SEI)和电极表面金属中心的氧化态。基于实证研究结果,提出了一个关于SEI中金属离子位置及其在影响电极表面锂离子迁移率方面作用的概念模型。