Schumacher Maria A, Chinnam Naga Babu, Cuthbert Bonnie, Tonthat Nam K, Whitfill Travis
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
Genes Dev. 2015 Feb 15;29(4):451-64. doi: 10.1101/gad.254714.114.
All cells must sense and adapt to changing nutrient availability. However, detailed molecular mechanisms coordinating such regulatory pathways remain poorly understood. In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA, which is deactivated by feedback-inhibited glutamine synthetase (GS) during nitrogen excess and stabilized by GlnK upon nitrogen depletion, and the repressor GlnR. Here we describe a complete molecular dissection of this network. TnrA and GlnR, the global nitrogen homeostatic transcription regulators, are revealed as founders of a new structural family of dimeric DNA-binding proteins with C-terminal, flexible, effector-binding sensors that modulate their dimerization. Remarkably, the TnrA sensor domains insert into GS intersubunit catalytic pores, destabilizing the TnrA dimer and causing an unprecedented GS dodecamer-to-tetradecamer conversion, which concomitantly deactivates GS. In contrast, each subunit of the GlnK trimer "templates" active TnrA dimers. Unlike TnrA, GlnR sensors mediate an autoinhibitory dimer-destabilizing interaction alleviated by GS, which acts as a GlnR chaperone. Thus, these studies unveil heretofore unseen mechanisms by which inducible sensor domains drive metabolic reprograming in the model Gram-positive bacterium B. subtilis.
所有细胞都必须感知并适应不断变化的营养物质可利用性。然而,协调此类调控途径的详细分子机制仍知之甚少。在枯草芽孢杆菌中,氮稳态由一个独特的调控回路控制,该回路由调节因子TnrA和阻遏蛋白GlnR组成。在氮过量时,TnrA会被反馈抑制的谷氨酰胺合成酶(GS)失活,而在氮缺乏时,GlnK会使其稳定。在这里,我们描述了这个网络的完整分子解析。TnrA和GlnR这两个全局氮稳态转录调节因子,被揭示为具有C末端柔性效应物结合传感器的二聚体DNA结合蛋白新结构家族的成员,这些传感器可调节它们的二聚化。值得注意的是,TnrA传感器结构域插入到GS亚基间的催化孔中,使TnrA二聚体不稳定,并导致前所未有的GS十二聚体到十四聚体的转变,这同时使GS失活。相反,GlnK三聚体的每个亚基“模板化”活性TnrA二聚体。与TnrA不同,GlnR传感器介导一种自抑制性的二聚体不稳定相互作用,这种相互作用被作为GlnR伴侣的GS缓解。因此,这些研究揭示了此前未见的机制,通过这些机制,可诱导的传感器结构域在模式革兰氏阳性菌枯草芽孢杆菌中驱动代谢重编程。