Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam (Germany); School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (P.R. China).
ChemSusChem. 2015 Apr 24;8(8):1350-8. doi: 10.1002/cssc.201403168. Epub 2015 Feb 18.
Herein, we show the facile synthesis of an efficient silver phosphate/graphitic carbon nitride (Ag3 PO4 /g-C3 N4 ) photocatalyst for oxygen production and pollutant degradation by using electrostatically driven assembly and ion-exchange processes. The composite materials demonstrate a sheet-like C3 N4 structure, decorated with different Ag3 PO4 particles sizes. Detailed analysis of the reactions mechanism by electron-spin resonance and radical-capture agents strongly imply the formation of an in situ Z-scheme by the evolution of small silver nanoparticles in the interface of the materials under illumination. The Ag nanoparticles improve charge separation within the composite material by acting as a storage and recombination center for electrons and holes from Ag3 PO4 and C3 N4 , respectively. In addition, the photostability of Ag3 PO4 is enhanced relative to that of the bulk materials, which results in a stabilized heterojunction. We believe that this work provides new insight into the operation mechanism of composite photocatalysts for water splitting and opens the possibility for advanced photocatalysis based on the higher oxidation power of Ag3 PO4 .
在此,我们展示了一种通过静电驱动组装和离子交换过程制备高效磷酸银/石墨相氮化碳(Ag3 PO4 /g-C3 N4 )光催化剂用于氧气生成和污染物降解的简便方法。复合材料表现出片状的 C3 N4 结构,表面装饰有不同尺寸的 Ag3 PO4 颗粒。通过电子自旋共振和自由基捕获剂对反应机理的详细分析强烈表明,在光照下,通过材料界面中小银纳米粒子的演化,形成了原位 Z 型方案。Ag 纳米粒子通过分别充当 Ag3 PO4 和 C3 N4 中电子和空穴的存储和复合中心,提高了复合材料中的电荷分离。此外,Ag3 PO4 的光稳定性相对于体相材料得到增强,从而形成了稳定的异质结。我们相信这项工作为水分解复合光催化剂的作用机制提供了新的见解,并为基于 Ag3 PO4 更高氧化能力的先进光催化开辟了可能性。