Suppr超能文献

设计用于在空间上描绘爱泼斯坦-巴尔病毒主要病毒体糖蛋白gp350中和表位的肽引发的抗体可阻断病毒中和抗体72A1与天然gp350分子的相互作用。

Peptides designed to spatially depict the Epstein-Barr virus major virion glycoprotein gp350 neutralization epitope elicit antibodies that block virus-neutralizing antibody 72A1 interaction with the native gp350 molecule.

作者信息

Tanner Jerome E, Coinçon Mathieu, Leblond Valérie, Hu Jing, Fang Janey M, Sygusch Jurgen, Alfieri Caroline

机构信息

Laboratory of Viral Pathogenesis, CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada.

Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada.

出版信息

J Virol. 2015 May;89(9):4932-41. doi: 10.1128/JVI.03269-14. Epub 2015 Feb 18.

Abstract

UNLABELLED

Epstein-Barr virus (EBV) is the etiologic agent of infectious mononucleosis and the root cause of B-cell lymphoproliferative disease in individuals with a weakened immune system, as well as a principal cofactor in nasopharyngeal carcinoma, various lymphomas, and other cancers. The EBV major virion surface glycoprotein gp350 is viewed as the best vaccine candidate to prevent infectious mononucleosis in healthy EBV-naive persons and EBV-related cancers in at-risk individuals. Previous epitope mapping of gp350 revealed only one dominant neutralizing epitope, which has been shown to be the target of the monoclonal antibody 72A1. Computer modeling of the 72A1 antibody interaction with the gp350 amino terminus was used to identify gp350 amino acids that could form strong ionic, electrostatic, or hydrogen bonds with the 72A1 antibody. Peptide DDRTTLQLAQNPVYIPETYPYIKWDN (designated peptide 2) and peptide GSAKPGNGSYFASVKTEMLGNEID (designated peptide 3) were designed to spatially represent the gp350 amino acids predicted to interact with the 72A1 antibody paratope. Peptide 2 bound to the 72A1 antibody and blocked 72A1 antibody recognition of the native gp350 molecule. Peptide 2 and peptide 3 were recognized by human IgG and shown to elicit murine antibodies that could target gp350 and block its recognition by the 72A1 antibody. This work provides a structural mapping of the interaction between the EBV-neutralizing antibody 72A1 and the major virion surface protein gp350. gp350 mimetic peptides that spatially depict the EBV-neutralizing epitope would be useful as a vaccine to focus the immune system exclusively to this important virus epitope.

IMPORTANCE

The production of virus-neutralizing antibodies targeting the Epstein-Barr virus (EBV) major surface glycoprotein gp350 is important for the prevention of infectious mononucleosis and EBV-related cancers. The data presented here provide the first in silico map of the gp350 interaction with a virus-blocking monoclonal antibody. Immunization with gp350 peptides identified by in silico mapping generated antibodies that cross-react with the EBV gp350 molecule and block recognition of the gp350 molecule by a virus-neutralizing antibody. Through its ability to focus the immune system exclusively on the gp350 sequence important for viral entry, these peptides may form the basis of an EBV vaccine candidate. This strategy would sidestep the production of other irrelevant gp350 antibodies that divert the immune system from generating a protective antiviral response or that impede access to the virus-blocking epitope by protective antibodies.

摘要

未标记

爱泼斯坦-巴尔病毒(EBV)是传染性单核细胞增多症的病原体,也是免疫系统较弱个体中B细胞淋巴增殖性疾病的根本原因,还是鼻咽癌、各种淋巴瘤及其他癌症的主要辅助因子。EBV主要病毒体表面糖蛋白gp350被视为预防健康的EBV阴性个体感染传染性单核细胞增多症以及高危个体患EBV相关癌症的最佳疫苗候选物。先前对gp350的表位作图仅揭示了一个主要的中和表位,该表位已被证明是单克隆抗体72A1的靶点。利用72A1抗体与gp350氨基末端相互作用的计算机建模来鉴定可与72A1抗体形成强离子键、静电键或氢键的gp350氨基酸。设计了肽DDRTTLQLAQNPVYIPETYPYIKWDN(命名为肽2)和肽GSAKPGNGSYFASVKTEMLGNEID(命名为肽3),以在空间上代表预测与72A1抗体互补位相互作用的gp350氨基酸。肽2与72A1抗体结合,并阻断72A1抗体对天然gp350分子的识别。肽2和肽3可被人IgG识别,并显示能引发可靶向gp350并阻断72A1抗体对其识别的鼠抗体。这项工作提供了EBV中和抗体72A1与主要病毒体表面蛋白gp350之间相互作用的结构图谱。在空间上描绘EBV中和表位的gp350模拟肽可作为一种疫苗,使免疫系统专门针对这一重要的病毒表位。

重要性

产生靶向爱泼斯坦-巴尔病毒(EBV)主要表面糖蛋白gp350的病毒中和抗体对于预防传染性单核细胞增多症和EBV相关癌症很重要。此处呈现的数据提供了gp350与一种病毒阻断单克隆抗体相互作用的首个计算机模拟图谱。用通过计算机模拟作图鉴定出的gp350肽进行免疫接种可产生与EBV gp350分子交叉反应并阻断病毒中和抗体对gp350分子识别的抗体。通过其将免疫系统专门聚焦于对病毒进入重要的gp350序列的能力,这些肽可能构成EBV候选疫苗的基础。这种策略将避免产生其他不相关的gp350抗体,这些抗体要么使免疫系统无法产生保护性抗病毒反应,要么阻碍保护性抗体接近病毒阻断表位。

相似文献

4

引用本文的文献

1
A self-assembled nanoparticle vaccine elicits effective neutralizing antibody response against EBV infection.
Front Immunol. 2025 Jan 3;15:1530364. doi: 10.3389/fimmu.2024.1530364. eCollection 2024.
2
An insect cell-derived extracellular vesicle-based gB vaccine elicits robust adaptive immune responses against Epstein-Barr virus.
Sci China Life Sci. 2025 Mar;68(3):734-745. doi: 10.1007/s11427-023-2599-1. Epub 2024 Oct 31.
3
Preparation of monoclonal antibodies against Epstein-Barr virus glycoprotein 350.
Virus Genes. 2023 Oct;59(5):670-677. doi: 10.1007/s11262-023-02013-y. Epub 2023 Jun 16.
4
Four Decades of Prophylactic EBV Vaccine Research: A Systematic Review and Historical Perspective.
Front Immunol. 2022 Apr 14;13:867918. doi: 10.3389/fimmu.2022.867918. eCollection 2022.
6
The Status and Prospects of Epstein-Barr Virus Prophylactic Vaccine Development.
Front Immunol. 2021 Jun 8;12:677027. doi: 10.3389/fimmu.2021.677027. eCollection 2021.
7
Vaccination against the Epstein-Barr virus.
Cell Mol Life Sci. 2020 Nov;77(21):4315-4324. doi: 10.1007/s00018-020-03538-3. Epub 2020 May 4.

本文引用的文献

1
The need and challenges for development of an Epstein-Barr virus vaccine.
Vaccine. 2013 Apr 18;31 Suppl 2(0 2):B194-6. doi: 10.1016/j.vaccine.2012.09.041.
2
Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor.
Cell Rep. 2013 Feb 21;3(2):371-85. doi: 10.1016/j.celrep.2013.01.023. Epub 2013 Feb 14.
3
Cost-effectiveness and economic benefits of vaccines in low- and middle-income countries: a systematic review.
Vaccine. 2012 Dec 17;31(1):96-108. doi: 10.1016/j.vaccine.2012.10.103. Epub 2012 Nov 8.
4
Novel mechanisms of EBV-induced oncogenesis.
Curr Opin Virol. 2012 Aug;2(4):453-8. doi: 10.1016/j.coviro.2012.07.001. Epub 2012 Aug 1.
5
Post transplant lymphoproliferative disorders: risk, classification, and therapeutic recommendations.
Curr Treat Options Oncol. 2012 Mar;13(1):122-36. doi: 10.1007/s11864-011-0177-x.
6
Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope.
J Mol Biol. 2012 Jan 6;415(1):175-92. doi: 10.1016/j.jmb.2011.10.003. Epub 2011 Oct 31.
7
Epstein-Barr virus: an important vaccine target for cancer prevention.
Sci Transl Med. 2011 Nov 2;3(107):107fs7. doi: 10.1126/scitranslmed.3002878.
8
Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus.
J Mol Biol. 2011 Jun 24;409(5):853-66. doi: 10.1016/j.jmb.2011.04.044. Epub 2011 Apr 27.
9
Progress and problems in understanding and managing primary Epstein-Barr virus infections.
Clin Microbiol Rev. 2011 Jan;24(1):193-209. doi: 10.1128/CMR.00044-10.
10
Elicitation of structure-specific antibodies by epitope scaffolds.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):17880-7. doi: 10.1073/pnas.1004728107. Epub 2010 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验