Summitt Candice B, Johnson Lynnette C, Jönsson Thomas J, Parsonage Derek, Holmes Ross P, Lowther W Todd
*Center for Structural Biology and Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, U.S.A.
†Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A.
Biochem J. 2015 Mar 1;466(2):273-81. doi: 10.1042/BJ20141159.
The primary hyperoxalurias (PH), types 1-3, are disorders of glyoxylate metabolism that result in increased oxalate production and calcium oxalate stone formation. The breakdown of trans-4-hydroxy-L-proline (Hyp) from endogenous and dietary sources of collagen makes a significant contribution to the cellular glyoxylate pool. Proline dehydrogenase 2 (PRODH2), historically known as hydroxyproline oxidase, is the first step in the hydroxyproline catabolic pathway and represents a drug target to reduce the glyoxylate and oxalate burden of PH patients. This study is the first report of the expression, purification, and biochemical characterization of human PRODH2. Evaluation of a panel of N-terminal and C-terminal truncation variants indicated that residues 157-515 contain the catalytic core with one FAD molecule. The 12-fold higher k(cat)/K(m) value of 0.93 M⁻¹·s⁻¹ for Hyp over Pro demonstrates the preference for Hyp as substrate. Moreover, an anaerobic titration determined a K(d) value of 125 μM for Hyp, a value ~1600-fold lower than the K(m) value. A survey of ubiquinone analogues revealed that menadione, duroquinone, and CoQ₁ reacted more efficiently than oxygen as the terminal electron acceptor during catalysis. Taken together, these data and the slow reactivity with sodium sulfite support that PRODH2 functions as a dehydrogenase and most likely utilizes CoQ₁₀ as the terminal electron acceptor in vivo. Thus, we propose that the name of PRODH2 be changed to hydroxyproline dehydrogenase (HYPDH). Three Hyp analogues were also identified to inhibit the activity of HYPDH, representing the first steps toward the development of a novel approach to treat all forms of PH.
原发性高草酸尿症(PH)1 - 3型是乙醛酸代谢紊乱疾病,会导致草酸盐生成增加和草酸钙结石形成。内源性和膳食来源的胶原蛋白中的反式4 - 羟基 - L - 脯氨酸(Hyp)分解对细胞乙醛酸池有显著贡献。脯氨酸脱氢酶2(PRODH2),历史上称为羟脯氨酸氧化酶,是羟脯氨酸分解代谢途径的第一步,是减轻PH患者乙醛酸和草酸盐负担的药物靶点。本研究首次报道了人PRODH2的表达、纯化及生化特性。对一组N端和C端截短变体的评估表明,157 - 515位残基包含带有一个FAD分子的催化核心。Hyp的k(cat)/K(m)值为0.93 M⁻¹·s⁻¹,比Pro高12倍,表明其更倾向于以Hyp为底物。此外,厌氧滴定确定Hyp的K(d)值为125 μM,该值比K(m)值低约1600倍。对泛醌类似物的研究表明,在催化过程中,甲萘醌、杜醌和辅酶Q₁作为末端电子受体比氧气反应更有效。综合这些数据以及与亚硫酸钠的缓慢反应性,支持PRODH2作为脱氢酶发挥作用,并且在体内最有可能利用辅酶Q₁₀作为末端电子受体。因此,我们建议将PRODH2的名称更改为羟脯氨酸脱氢酶(HYPDH)。还鉴定出三种Hyp类似物可抑制HYPDH的活性,这是开发治疗所有形式PH新方法的第一步。
Biochim Biophys Acta Mol Basis Dis. 2019-12-7
J Bacteriol. 2016-2-1
Arch Biochem Biophys. 2017-10-15
Arch Biochem Biophys. 2010-5-5
Front Cell Dev Biol. 2025-5-16
J Hematol Oncol. 2024-11-5
Biochem Biophys Rep. 2024-6-28
Curr Opin Nephrol Hypertens. 2024-7-1
Exp Biol Med (Maywood). 2023-9
Exp Biol Med (Maywood). 2023-7
Proc Natl Acad Sci U S A. 2014-2-18
Biochim Biophys Acta. 2013-10
Expert Opin Investig Drugs. 2012-11-21
Biochim Biophys Acta. 2012-10
J Mol Med (Berl). 2012-6-24
Biochim Biophys Acta. 2012-9
Protein Expr Purif. 2012-4
Am J Physiol Gastrointest Liver Physiol. 2011-12-29