文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脯氨酸脱氢酶2(PRODH2)是一种羟脯氨酸脱氢酶(HYPDH),也是治疗原发性高草酸尿症的分子靶点。

Proline dehydrogenase 2 (PRODH2) is a hydroxyproline dehydrogenase (HYPDH) and molecular target for treating primary hyperoxaluria.

作者信息

Summitt Candice B, Johnson Lynnette C, Jönsson Thomas J, Parsonage Derek, Holmes Ross P, Lowther W Todd

机构信息

*Center for Structural Biology and Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, U.S.A.

†Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A.

出版信息

Biochem J. 2015 Mar 1;466(2):273-81. doi: 10.1042/BJ20141159.


DOI:10.1042/BJ20141159
PMID:25697095
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4377293/
Abstract

The primary hyperoxalurias (PH), types 1-3, are disorders of glyoxylate metabolism that result in increased oxalate production and calcium oxalate stone formation. The breakdown of trans-4-hydroxy-L-proline (Hyp) from endogenous and dietary sources of collagen makes a significant contribution to the cellular glyoxylate pool. Proline dehydrogenase 2 (PRODH2), historically known as hydroxyproline oxidase, is the first step in the hydroxyproline catabolic pathway and represents a drug target to reduce the glyoxylate and oxalate burden of PH patients. This study is the first report of the expression, purification, and biochemical characterization of human PRODH2. Evaluation of a panel of N-terminal and C-terminal truncation variants indicated that residues 157-515 contain the catalytic core with one FAD molecule. The 12-fold higher k(cat)/K(m) value of 0.93 M⁻¹·s⁻¹ for Hyp over Pro demonstrates the preference for Hyp as substrate. Moreover, an anaerobic titration determined a K(d) value of 125 μM for Hyp, a value ~1600-fold lower than the K(m) value. A survey of ubiquinone analogues revealed that menadione, duroquinone, and CoQ₁ reacted more efficiently than oxygen as the terminal electron acceptor during catalysis. Taken together, these data and the slow reactivity with sodium sulfite support that PRODH2 functions as a dehydrogenase and most likely utilizes CoQ₁₀ as the terminal electron acceptor in vivo. Thus, we propose that the name of PRODH2 be changed to hydroxyproline dehydrogenase (HYPDH). Three Hyp analogues were also identified to inhibit the activity of HYPDH, representing the first steps toward the development of a novel approach to treat all forms of PH.

摘要

原发性高草酸尿症(PH)1 - 3型是乙醛酸代谢紊乱疾病,会导致草酸盐生成增加和草酸钙结石形成。内源性和膳食来源的胶原蛋白中的反式4 - 羟基 - L - 脯氨酸(Hyp)分解对细胞乙醛酸池有显著贡献。脯氨酸脱氢酶2(PRODH2),历史上称为羟脯氨酸氧化酶,是羟脯氨酸分解代谢途径的第一步,是减轻PH患者乙醛酸和草酸盐负担的药物靶点。本研究首次报道了人PRODH2的表达、纯化及生化特性。对一组N端和C端截短变体的评估表明,157 - 515位残基包含带有一个FAD分子的催化核心。Hyp的k(cat)/K(m)值为0.93 M⁻¹·s⁻¹,比Pro高12倍,表明其更倾向于以Hyp为底物。此外,厌氧滴定确定Hyp的K(d)值为125 μM,该值比K(m)值低约1600倍。对泛醌类似物的研究表明,在催化过程中,甲萘醌、杜醌和辅酶Q₁作为末端电子受体比氧气反应更有效。综合这些数据以及与亚硫酸钠的缓慢反应性,支持PRODH2作为脱氢酶发挥作用,并且在体内最有可能利用辅酶Q₁₀作为末端电子受体。因此,我们建议将PRODH2的名称更改为羟脯氨酸脱氢酶(HYPDH)。还鉴定出三种Hyp类似物可抑制HYPDH的活性,这是开发治疗所有形式PH新方法的第一步。

相似文献

[1]
Proline dehydrogenase 2 (PRODH2) is a hydroxyproline dehydrogenase (HYPDH) and molecular target for treating primary hyperoxaluria.

Biochem J. 2015-3-1

[2]
The effects of the inactivation of Hydroxyproline dehydrogenase on urinary oxalate and glycolate excretion in mouse models of primary hyperoxaluria.

Biochim Biophys Acta Mol Basis Dis. 2019-12-7

[3]
Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.

Biochemistry. 2004-10-5

[4]
Efficacy of Hydroxy-L-proline (HYP) analogs in the treatment of primary hyperoxaluria in Drosophila Melanogaster.

BMC Nephrol. 2018-7-6

[5]
L-Hydroxyproline and d-Proline Catabolism in Sinorhizobium meliloti.

J Bacteriol. 2016-2-1

[6]
Structure, function, and mechanism of proline utilization A (PutA).

Arch Biochem Biophys. 2017-10-15

[7]
A conserved active site tyrosine residue of proline dehydrogenase helps enforce the preference for proline over hydroxyproline as the substrate.

Biochemistry. 2009-2-10

[8]
Metabolism of (13)C5-hydroxyproline in mouse models of Primary Hyperoxaluria and its inhibition by RNAi therapeutics targeting liver glycolate oxidase and hydroxyproline dehydrogenase.

Biochim Biophys Acta. 2016-2

[9]
Purification and characterization of Put1p from Saccharomyces cerevisiae.

Arch Biochem Biophys. 2010-5-5

[10]
Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.

Biochemistry. 2005-6-28

引用本文的文献

[1]
The new insight into the role of hydroxyproline in metabolism of cancer cells.

Front Cell Dev Biol. 2025-5-16

[2]
Biochemical, structural, and cellular characterization of S-but-3-yn-2-ylglycine as a mechanism-based covalent inactivator of the flavoenzyme proline dehydrogenase.

Arch Biochem Biophys. 2025-3

[3]
Optimizing CAR-T cell therapy for solid tumors: current challenges and potential strategies.

J Hematol Oncol. 2024-11-5

[4]
Noncovalent Inhibition and Covalent Inactivation of Proline Dehydrogenase by Analogs of -Propargylglycine.

Biochemistry. 2024-11-5

[5]
4-hydroxy-2-oxoglutarate metabolism in a mouse model of Primary Hyperoxaluria Type 3.

Biochem Biophys Rep. 2024-6-28

[6]
A molecular journey on the pathogenesis of primary hyperoxaluria.

Curr Opin Nephrol Hypertens. 2024-7-1

[7]
GC-MS analysis of 4-hydroxyproline: elevated proline hydroxylation in metformin-associated lactic acidosis and metformin-treated Becker muscular dystrophy patients.

Amino Acids. 2024-3-10

[8]
Can proline dehydrogenase-a key enzyme involved in proline metabolism-be a novel target for cancer therapy?

Front Oncol. 2023-11-6

[9]
Synthesis of glycine from 4-hydroxyproline in tissues of neonatal pigs with intrauterine growth restriction.

Exp Biol Med (Maywood). 2023-9

[10]
Synthesis of glycine from 4-hydroxyproline in tissues of neonatal pigs.

Exp Biol Med (Maywood). 2023-7

本文引用的文献

[1]
Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.

Proc Natl Acad Sci U S A. 2014-2-18

[2]
Multiple mechanisms of action of pyridoxine in primary hyperoxaluria type 1.

Biochim Biophys Acta. 2013-10

[3]
Hyperoxaluria and systemic oxalosis: an update on current therapy and future directions.

Expert Opin Investig Drugs. 2012-11-21

[4]
4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition.

Biochim Biophys Acta. 2012-10

[5]
Primary hyperoxaluria type III--a model for studying perturbations in glyoxylate metabolism.

J Mol Med (Berl). 2012-6-24

[6]
Primary hyperoxalurias: disorders of glyoxylate detoxification.

Biochim Biophys Acta. 2012-9

[7]
Expression in Escherichia coli of the catalytic domain of human proline oxidase.

Protein Expr Purif. 2012-4

[8]
Metabolism of [13C5]hydroxyproline in vitro and in vivo: implications for primary hyperoxaluria.

Am J Physiol Gastrointest Liver Physiol. 2011-12-29

[9]
Steady-state kinetic mechanism of the proline:ubiquinone oxidoreductase activity of proline utilization A (PutA) from Escherichia coli.

Arch Biochem Biophys. 2011-10-25

[10]
Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria.

PLoS One. 2011-10-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索