a Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México Distrito Federal , CP 04510 , México.
c Unidad de Vinculación de la Facultad de Medicina , UNAM en el INMEGEN , Secretaría de Salud, México Distrito Federal , CP 14610 , México.
J Biomol Struct Dyn. 2016;34(1):78-91. doi: 10.1080/07391102.2015.1022225. Epub 2015 Apr 9.
In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca(2+)-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the "open" and "closed" conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM's inhibitors correlated well with available experimental data as the r(2) obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca(2+)-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca(2+)-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca(2+)-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.
为了为钙调蛋白(CaM)抑制剂的合理设计提供结构基础,我们使用对接和分子动力学(MD)模拟分析了 CaM 与 14 种经典拮抗剂和两种不影响 CaM 的化合物的相互作用,并将数据与现有实验数据进行了比较。模拟了 20ns 的 Ca(2+)-CaM-配体复合物,CaM 起始于“开放”和“闭合”构象。MD 模拟分析提供了 CaM 与这些配体相互作用时构象变化的深入了解。这些模拟用于从贡献ΔH 和ΔS 预测结合自由能(ΔG),为 CaM 配体结合热力学提供有用信息。CaM 抑制剂的ΔG 预测与可用的实验数据相关性良好,因为获得的 r(2)对于黄烷酮组为 0.76 和 0.82。此外,这里还提供了有价值的信息:I)CaM 在开放构象中有两个已知的优选配体结合位点,称为位点 1 和 4,II)CaM 可以结合结构性质多样的配体,III)CaM 的灵活性通过其配体的结合而降低,导致 Ca(2+)-CaM 熵降低,IV)焓在系统 Ca(2+)-CaM-配体的分子识别过程中起主导作用,V)与蛋白质有更广泛接触的配体对 Ca(2+)-CaM 的亲和力更高。尽管存在局限性,但对接和 MD 模拟结合实验数据仍然是药理学研究的极好工具,有助于合理设计新药。