Na Seungjin, Paek Eunok, Choi Jong-Soon, Kim Duwoon, Lee Seung Jae, Kwon Joseph
Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
Mol Biosyst. 2015 Apr;11(4):1156-64. doi: 10.1039/c4mb00688g.
The identification of disulfide bonds provides critical information regarding the structure and function of a protein and is a key aspect in understanding signaling cascades in biological systems. Recent proteomic approaches using digestion enzymes have facilitated the characterization of disulfide-bonds and/or oxidized products from cysteine residues, although these methods have limitations in the application of MS/MS. For example, protein digestion to obtain the native form of disulfide bonds results in short lengths of amino acids, which can cause ambiguous MS/MS analysis due to false positive identifications. In this study we propose a new approach, termed planned digestion, to obtain sufficient amino acid lengths after cleavage for proteomic approaches. Application of the DBond software to planned digestion of specific proteins accurately identified disulfide-linked peptides. RNase A was used as a model protein in this study because the disulfide bonds of this protein have been well characterized. Application of this approach to peptides digested with Asp-N/C (chemical digestion) and trypsin under acid hydrolysis conditions identified the four native disulfide bonds of RNase A. Missed cleavages introduced by trypsin treatment for only 3 hours generated sufficient lengths of amino acids for identification of the disulfide bonds. Analysis using MS/MS successfully showed additional fragmentation patterns that are cleavage products of S-S and C-S bonds of disulfide-linkage peptides. These fragmentation patterns generate thioaldehydes, persulfide, and dehydroalanine. This approach of planned digestion with missed cleavages using the DBond algorithm could be applied to other proteins to determine their disulfide linkage and the oxidation patterns of cysteine residues.
二硫键的鉴定为蛋白质的结构和功能提供了关键信息,是理解生物系统中信号级联反应的一个关键方面。尽管使用消化酶的蛋白质组学方法在串联质谱(MS/MS)应用方面存在局限性,但最近已有助于对二硫键和/或半胱氨酸残基的氧化产物进行表征。例如,为获得二硫键的天然形式而进行的蛋白质消化会产生短链氨基酸,这可能会因假阳性鉴定而导致MS/MS分析结果模糊。在本研究中,我们提出了一种新方法,称为计划消化,以在切割后获得足够长的氨基酸片段用于蛋白质组学研究。将DBond软件应用于特定蛋白质的计划消化可准确鉴定二硫键连接的肽段。在本研究中,核糖核酸酶A(RNase A)被用作模型蛋白,因为该蛋白的二硫键已得到充分表征。将该方法应用于在酸性水解条件下用天冬氨酸蛋白酶N/C(化学消化)和胰蛋白酶消化的肽段,鉴定出了RNase A的四个天然二硫键。仅用胰蛋白酶处理3小时所引入的漏切产生了足够长的氨基酸用于二硫键的鉴定。使用MS/MS分析成功显示了额外的碎裂模式,这些模式是二硫键连接肽段的S-S和C-S键的裂解产物。这些碎裂模式会产生硫醛、过硫化物和脱氢丙氨酸。这种使用DBond算法进行有漏切的计划消化方法可应用于其他蛋白质,以确定其二硫键连接情况和半胱氨酸残基的氧化模式。