Suppr超能文献

基于深度参数的 3D 人脸变形的 2D 人脸图像的头部姿势估计。

Head pose estimation from a 2D face image using 3D face morphing with depth parameters.

出版信息

IEEE Trans Image Process. 2015 Jun;24(6):1801-8. doi: 10.1109/TIP.2015.2405483. Epub 2015 Feb 19.

Abstract

This paper presents estimation of head pose angles from a single 2D face image using a 3D face model morphed from a reference face model. A reference model refers to a 3D face of a person of the same ethnicity and gender as the query subject. The proposed scheme minimizes the disparity between the two sets of prominent facial features on the query face image and the corresponding points on the 3D face model to estimate the head pose angles. The 3D face model used is morphed from a reference model to be more specific to the query face in terms of the depth error at the feature points. The morphing process produces a 3D face model more specific to the query image when multiple 2D face images of the query subject are available for training. The proposed morphing process is computationally efficient since the depth of a 3D face model is adjusted by a scalar depth parameter at feature points. Optimal depth parameters are found by minimizing the disparity between the 2D features of the query face image and the corresponding features on the morphed 3D model projected onto 2D space. The proposed head pose estimation technique was evaluated on two benchmarking databases: 1) the USF Human-ID database for depth estimation and 2) the Pointing'04 database for head pose estimation. Experiment results demonstrate that head pose estimation errors in nodding and shaking angles are as low as 7.93° and 4.65° on average for a single 2D input face image.

摘要

本文提出了一种使用 3D 人脸模型从单张 2D 人脸图像估计头部姿势角度的方法,该 3D 人脸模型是由参考人脸模型变形得到的。参考模型是指与查询对象同种族和性别的人的 3D 人脸。所提出的方案通过最小化查询人脸图像上两组显著面部特征与 3D 人脸模型上相应点之间的差异来估计头部姿势角度。所使用的 3D 人脸模型是从参考模型变形而来的,其特征点处的深度误差更具体到查询人脸。当有多个查询对象的 2D 人脸图像可供训练时,变形过程会生成一个更具体到查询图像的 3D 人脸模型。由于 3D 人脸模型的深度是通过特征点处的标量深度参数进行调整的,因此该变形过程具有计算效率。最优深度参数是通过最小化查询人脸图像的 2D 特征与投影到 2D 空间的变形 3D 模型上的相应特征之间的差异来找到的。所提出的头部姿势估计技术在两个基准数据库上进行了评估:1)USF Human-ID 数据库用于深度估计,2)Pointing'04 数据库用于头部姿势估计。实验结果表明,对于单个 2D 输入人脸图像,点头和摇头角度的头部姿势估计误差平均低至 7.93°和 4.65°。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验