Lin Jau-Ji, Lin Zih-Lin, Hwang Jenn-Kang, Huang Tsun-Tsao
BMC Bioinformatics. 2015;16 Suppl 1(Suppl 1):S7. doi: 10.1186/1471-2105-16-S1-S7. Epub 2015 Jan 21.
Characterizing the interface residues will help shed light on protein-protein interactions, which are involved in many important biological processes. Many studies focus on characterizing sequence or structure features of protein interfaces, but there are few studies characterizing the dynamics of interfaces. Therefore, we would like to know whether there is any specific dynamics pattern in the protein-protein interaction interfaces. Thermal fluctuation is an important dynamical property for a residue, and could be quickly estimated by local packing density without large computation since studies have showen closely relationship between these two properties. Therefore, we divided surface of an unbound subunit (free protein subunits before they are involved in forming the protein complexes) into several separate regions, and compared their average thermal fluctuations of different regions in order to characterize the dynamics pattern in unbound protein-protein interaction interfaces.
We used weighted contact numbers (WCN), a parameter-free method to quantify packing density, to estimate the thermal fluctuations of residues in the interfaces. By analyzing the WCN distributions of interfaces in unbound subunits from 1394 non-homologous protein complexes, we show that the residues in the central regions of interfaces have higher packing density (i.e. more rigid); on the other hand, residues surrounding the central regions have smaller packing density (i.e. more flexible). The distinct distributions of packing density, suggesting distinct thermal fluctuation, reveals specific dynamics pattern in the interface of unbound protein subunits.
We found general trend that the unbound protein-protein interaction interfaces consist of rigid residues in the central regions, which are surrounded by flexible residues. This finding suggests that the dynamics might be one of the important features for the formation of protein complexes.
表征界面残基将有助于揭示蛋白质-蛋白质相互作用,其涉及许多重要的生物学过程。许多研究聚焦于表征蛋白质界面的序列或结构特征,但很少有研究表征界面的动力学。因此,我们想知道在蛋白质-蛋白质相互作用界面中是否存在任何特定的动力学模式。热涨落是残基的一种重要动力学性质,并且由于研究表明这两种性质之间存在密切关系,所以可以通过局部堆积密度快速估计而无需大量计算。因此,我们将未结合亚基(参与形成蛋白质复合物之前的游离蛋白质亚基)的表面划分为几个单独的区域,并比较不同区域的平均热涨落,以表征未结合蛋白质-蛋白质相互作用界面中的动力学模式。
我们使用加权接触数(WCN),一种无参数方法来量化堆积密度,以估计界面中残基的热涨落。通过分析来自1394个非同源蛋白质复合物的未结合亚基中界面的WCN分布,我们表明界面中心区域的残基具有更高的堆积密度(即更刚性);另一方面,中心区域周围的残基具有较小的堆积密度(即更灵活)。堆积密度的不同分布表明热涨落不同,揭示了未结合蛋白质亚基界面中的特定动力学模式。
我们发现一般趋势是未结合的蛋白质-蛋白质相互作用界面由中心区域的刚性残基组成,这些刚性残基被柔性残基包围。这一发现表明动力学可能是蛋白质复合物形成的重要特征之一。