Daniele Federica, Di Cairano Eliana S, Moretti Stefania, Piccoli Giovanni, Perego Carla
Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano.
San Raffaele Scientific Institute and Vita-Salute University.
J Vis Exp. 2015 Jan 29(95):52267. doi: 10.3791/52267.
Synaptic vesicles release neurotransmitters at chemical synapses through a dynamic cycle of fusion and retrieval. Monitoring synaptic activity in real time and dissecting the different steps of exo-endocytosis at the single-vesicle level are crucial for understanding synaptic functions in health and disease. Genetically-encoded pH-sensitive probes directly targeted to synaptic vesicles and Total Internal Reflection Fluorescence Microscopy (TIRFM) provide the spatio-temporal resolution necessary to follow vesicle dynamics. The evanescent field generated by total internal reflection can only excite fluorophores placed in a thin layer (<150 nm) above the glass cover on which cells adhere, exactly where the processes of exo-endocytosis take place. The resulting high-contrast images are ideally suited for vesicles tracking and quantitative analysis of fusion events. In this protocol, SH-SY5Y human neuroblastoma cells are proposed as a valuable model for studying neurotransmitter release at the single-vesicle level by TIRFM, because of their flat surface and the presence of dispersed vesicles. The methods for growing SH-SY5Y as adherent cells and for transfecting them with synapto-pHluorin are provided, as well as the technique to perform TIRFM and imaging. Finally, a strategy aiming to select, count, and analyze fusion events at whole-cell and single-vesicle levels is presented. To validate the imaging procedure and data analysis approach, the dynamics of pHluorin-tagged vesicles are analyzed under resting and stimulated (depolarizing potassium concentrations) conditions. Membrane depolarization increases the frequency of fusion events and causes a parallel raise of the net fluorescence signal recorded in whole cell. Single-vesicle analysis reveals modifications of fusion-event behavior (increased peak height and width). These data suggest that potassium depolarization not only induces a massive neurotransmitter release but also modifies the mechanism of vesicle fusion and recycling. With the appropriate fluorescent probe, this technique can be employed in different cellular systems to dissect the mechanisms of constitutive and stimulated secretion.
突触小泡通过融合和回收的动态循环在化学突触处释放神经递质。实时监测突触活动并在单小泡水平剖析胞吐 - 内吞的不同步骤对于理解健康和疾病状态下的突触功能至关重要。直接靶向突触小泡的基因编码pH敏感探针和全内反射荧光显微镜(TIRFM)提供了追踪小泡动态所需的时空分辨率。全内反射产生的倏逝场只能激发位于细胞粘附的玻璃盖上方薄层(<150 nm)中的荧光团,而胞吐 - 内吞过程恰好在此处发生。由此产生的高对比度图像非常适合小泡追踪和融合事件的定量分析。在本方案中,SH - SY5Y人神经母细胞瘤细胞因其表面平坦且存在分散的小泡,被提议作为通过TIRFM在单小泡水平研究神经递质释放的有价值模型。提供了将SH - SY5Y细胞培养为贴壁细胞并将其用突触pH荧光蛋白转染的方法,以及进行TIRFM和成像的技术。最后,提出了一种旨在在全细胞和单小泡水平选择、计数和分析融合事件的策略。为了验证成像程序和数据分析方法,在静息和刺激(去极化钾浓度)条件下分析了pH荧光蛋白标记小泡的动态。膜去极化增加了融合事件的频率,并导致全细胞记录的净荧光信号平行升高。单小泡分析揭示了融合事件行为的改变(峰高和宽度增加)。这些数据表明钾去极化不仅诱导大量神经递质释放,还改变了小泡融合和循环的机制。使用合适的荧光探针,该技术可用于不同的细胞系统,以剖析组成型和刺激型分泌的机制。