Suppr超能文献

评估不同预处理步骤在静息态功能磁共振成像数据中估计图论指标的可靠性。

Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data.

作者信息

Aurich Nathassia K, Alves Filho José O, Marques da Silva Ana M, Franco Alexandre R

机构信息

Faculdade de Engenharia, PUCRS Porto Alegre, Brazil.

Faculdade de Engenharia, PUCRS Porto Alegre, Brazil ; Instituto do Cérebro do Rio Grande do Sul (InsCer-RS), PUCRS Porto Alegre, Brazil ; Faculdade de Física, PUCRS Porto Alegre, Brazil.

出版信息

Front Neurosci. 2015 Feb 19;9:48. doi: 10.3389/fnins.2015.00048. eCollection 2015.

Abstract

With resting-state functional MRI (rs-fMRI) there are a variety of post-processing methods that can be used to quantify the human brain connectome. However, there is also a choice of which preprocessing steps will be used prior to calculating the functional connectivity of the brain. In this manuscript, we have tested seven different preprocessing schemes and assessed the reliability between and reproducibility within the various strategies by means of graph theoretical measures. Different preprocessing schemes were tested on a publicly available dataset, which includes rs-fMRI data of healthy controls. The brain was parcellated into 190 nodes and four graph theoretical (GT) measures were calculated; global efficiency (GEFF), characteristic path length (CPL), average clustering coefficient (ACC), and average local efficiency (ALE). Our findings indicate that results can significantly differ based on which preprocessing steps are selected. We also found dependence between motion and GT measurements in most preprocessing strategies. We conclude that by using censoring based on outliers within the functional time-series as a processing, results indicate an increase in reliability of GT measurements with a reduction of the dependency of head motion.

摘要

使用静息态功能磁共振成像(rs-fMRI)时,有多种后处理方法可用于量化人类大脑连接组。然而,在计算大脑功能连接之前,对于使用哪些预处理步骤也存在选择。在本手稿中,我们测试了七种不同的预处理方案,并通过图论测量评估了各种策略之间的可靠性和策略内部的可重复性。在一个公开可用的数据集上测试了不同的预处理方案,该数据集包括健康对照的rs-fMRI数据。将大脑划分为190个节点,并计算了四种图论(GT)测量指标;全局效率(GEFF)、特征路径长度(CPL)、平均聚类系数(ACC)和平均局部效率(ALE)。我们的研究结果表明,根据选择的预处理步骤,结果可能会有显著差异。我们还发现在大多数预处理策略中,运动与GT测量之间存在相关性。我们得出结论,通过将基于功能时间序列中的异常值进行的审查作为一种处理方式,结果表明GT测量的可靠性有所提高,同时头部运动的相关性降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b90/4333797/09da744ba8f3/fnins-09-00048-g0001.jpg

相似文献

2
The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI.
Front Comput Neurosci. 2018 Feb 13;12:8. doi: 10.3389/fncom.2018.00008. eCollection 2018.
3
Test-retest reliability of graph metrics of resting state MRI functional brain networks: A review.
J Neurosci Methods. 2015 Sep 30;253:183-92. doi: 10.1016/j.jneumeth.2015.05.020. Epub 2015 Jun 11.
4
Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state.
Neuroimage. 2014 Jan 1;84:888-900. doi: 10.1016/j.neuroimage.2013.09.013. Epub 2013 Sep 18.
5
An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
Neuroimage. 2018 May 1;171:415-436. doi: 10.1016/j.neuroimage.2017.12.073. Epub 2017 Dec 24.
6
Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures.
Neuroimage. 2012 Jan 16;59(2):1404-12. doi: 10.1016/j.neuroimage.2011.08.044. Epub 2011 Aug 23.
7
Network Representation of fMRI Data Using Visibility Graphs: The Impact of Motion and Test-Retest Reliability.
Neuroinformatics. 2024 Apr;22(2):107-118. doi: 10.1007/s12021-024-09652-y. Epub 2024 Feb 9.
8
Test-retest reliability of graph metrics in high-resolution functional connectomics: a resting-state functional MRI study.
CNS Neurosci Ther. 2015 Oct;21(10):802-16. doi: 10.1111/cns.12431. Epub 2015 Jul 27.
9
An empirical Bayes normalization method for connectivity metrics in resting state fMRI.
Front Neurosci. 2015 Sep 16;9:316. doi: 10.3389/fnins.2015.00316. eCollection 2015.
10
Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
Hum Brain Mapp. 2019 Jun 1;40(8):2358-2376. doi: 10.1002/hbm.24528. Epub 2019 Jan 21.

引用本文的文献

1
Multi-echo versus single-echo EPI sequences for task-fMRI: A comparative study.
Imaging Neurosci (Camb). 2025 Jul 28;3. doi: 10.1162/IMAG.a.94. eCollection 2025.
3
Functional Connectivity Biomarkers in Schizophrenia.
Adv Neurobiol. 2024;40:237-283. doi: 10.1007/978-3-031-69491-2_10.
6
7
Different MRI structural processing methods do not impact functional connectivity computation.
Sci Rep. 2023 May 26;13(1):8589. doi: 10.1038/s41598-023-34645-3.
8
Increased functional connectivity patterns in mild Alzheimer's disease: A rsfMRI study.
Front Aging Neurosci. 2023 Jan 9;14:1037347. doi: 10.3389/fnagi.2022.1037347. eCollection 2022.
9
Test-retest reliability of modular-relevant analysis in brain functional network.
Front Neurosci. 2022 Dec 7;16:1000863. doi: 10.3389/fnins.2022.1000863. eCollection 2022.
10
Recent Neuroscience Advances in Human Parenting.
Adv Neurobiol. 2022;27:239-267. doi: 10.1007/978-3-030-97762-7_8.

本文引用的文献

1
Recent progress and outstanding issues in motion correction in resting state fMRI.
Neuroimage. 2015 Jan 15;105:536-51. doi: 10.1016/j.neuroimage.2014.10.044. Epub 2014 Oct 24.
2
Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective.
Neurosci Biobehav Rev. 2014 Sep;45:100-18. doi: 10.1016/j.neubiorev.2014.05.009. Epub 2014 May 27.
3
Addressing head motion dependencies for small-world topologies in functional connectomics.
Front Hum Neurosci. 2013 Dec 26;7:910. doi: 10.3389/fnhum.2013.00910. eCollection 2013.
5
Functional connectivity and graph theory in preclinical Alzheimer's disease.
Neurobiol Aging. 2014 Apr;35(4):757-68. doi: 10.1016/j.neurobiolaging.2013.10.081. Epub 2013 Oct 18.
6
Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state.
Neuroimage. 2014 Jan 1;84:888-900. doi: 10.1016/j.neuroimage.2013.09.013. Epub 2013 Sep 18.
7
Methods to detect, characterize, and remove motion artifact in resting state fMRI.
Neuroimage. 2014 Jan 1;84:320-41. doi: 10.1016/j.neuroimage.2013.08.048. Epub 2013 Aug 29.
9
Impact of analysis methods on the reproducibility and reliability of resting-state networks.
Brain Connect. 2013;3(4):363-74. doi: 10.1089/brain.2012.0134. Epub 2013 Aug 3.
10
A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics.
Neuroimage. 2013 Aug 1;76:183-201. doi: 10.1016/j.neuroimage.2013.03.004. Epub 2013 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验