Suppr超能文献

多尺度对数差分边缘图用于在不同光照条件下的人脸识别。

Multiscale logarithm difference edgemaps for face recognition against varying lighting conditions.

出版信息

IEEE Trans Image Process. 2015 Jun;24(6):1735-47. doi: 10.1109/TIP.2015.2409988. Epub 2015 Mar 4.

Abstract

Lambertian model is a classical illumination model consisting of a surface albedo component and a light intensity component. Some previous researches assume that the light intensity component mainly lies in the large-scale features. They adopt holistic image decompositions to separate it out, but it is difficult to decide the separating point between large-scale and small-scale features. In this paper, we propose to take a logarithm transform, which can change the multiplication of surface albedo and light intensity into an additive model. Then, a difference (substraction) between two pixels in a neighborhood can eliminate most of the light intensity component. By dividing a neighborhood into subregions, edgemaps of multiple scales can be obtained. Then, each edgemap is multiplied by a weight that can be determined by an independent training scheme. Finally, all the weighted edgemaps are combined to form a robust holistic feature map. Extensive experiments on four benchmark data sets in controlled and uncontrolled lighting conditions show that the proposed method has promising results, especially in uncontrolled lighting conditions, even mixed with other complicated variations.

摘要

朗伯模型是一种经典的光照模型,由表面反射分量和光强分量组成。一些先前的研究假设光强分量主要存在于大尺度特征中。他们采用整体图像分解来分离它,但很难确定大尺度和小尺度特征之间的分离点。在本文中,我们提出取对数变换,它可以将表面反射率和光强的乘法转换为加法模型。然后,邻域中两个像素之间的差异(减法)可以消除大部分光强分量。通过将邻域划分为子区域,可以获得多个尺度的边缘图。然后,将每个边缘图乘以可以通过独立训练方案确定的权重。最后,将所有加权的边缘图组合起来形成一个稳健的整体特征图。在受控和非受控光照条件下的四个基准数据集上进行的广泛实验表明,该方法具有有前景的结果,特别是在非受控光照条件下,即使与其他复杂的变化混合在一起也是如此。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验