Missios Symeon, Bekelis Kimon
BMC Health Serv Res. 2015 Mar 4;15:85. doi: 10.1186/s12913-015-0742-2.
The economic sustainability of all areas of medicine is under scrutiny. Limited data exist on the drivers of cost after a craniotomy for tumor resection (CTR). The objective of the present study was to develop and validate a predictive model of hospitalization cost after CTR.
We performed a retrospective study involving CTR patients who were registered in the Nationwide Inpatient Sample (NIS) database from 2005-2010. This cohort underwent 1:1 randomization to create derivation and validation subsamples. Regression techniques were used for the creation of a parsimonious predictive model.
Of the 36,433 patients undergoing CTR, 14638 (40.2%) underwent craniotomies for primary malignant, 9574 (26.3%) for metastatic, and 11414 (31.3%) for benign tumors. The median hospitalization cost was $24,504 (Interquartile Range (IQR), $4,265-$44,743). Common drivers of cost identified in the multivariate analyses included: length of stay, number of procedures, hospital size and region, and patient income. The models were validated in independent cohorts and demonstrated final R2 very similar to the initial models. The predicted and observed values in the validation cohort demonstrated good correlation.
This national study identified significant drivers of hospitalization cost after CTR. The presented model can be utilized as an adjunct in the cost containment debate and the creation of data-driven policies.
医学各领域的经济可持续性正受到审视。关于肿瘤切除开颅手术(CTR)后成本驱动因素的数据有限。本研究的目的是建立并验证CTR后住院成本的预测模型。
我们进行了一项回顾性研究,纳入了2005年至2010年在全国住院患者样本(NIS)数据库中登记的CTR患者。该队列进行1:1随机分组以创建推导和验证子样本。采用回归技术建立简约预测模型。
在36433例接受CTR的患者中,14638例(40.2%)因原发性恶性肿瘤接受开颅手术,9574例(26.3%)因转移性肿瘤接受手术,11414例(31.3%)因良性肿瘤接受手术。住院成本中位数为24504美元(四分位间距(IQR),4265美元至44743美元)。多变量分析中确定的常见成本驱动因素包括:住院时间、手术数量、医院规模和地区以及患者收入。这些模型在独立队列中得到验证,最终R2与初始模型非常相似。验证队列中的预测值和观察值显示出良好的相关性。
这项全国性研究确定了CTR后住院成本的重要驱动因素。所提出的模型可作为成本控制辩论和制定数据驱动政策的辅助工具。