Jamann Tiffany M, Balint-Kurti Peter J, Holland James B
Department of Crop Science, North Carolina State University, Raleigh, NC, 27695-7620, USA.
Methods Mol Biol. 2015;1284:257-85. doi: 10.1007/978-1-4939-2444-8_13.
Quantitative trait locus (QTL) mapping in plants dates to the 1980s (Stuber et al. Crop Sci 27: 639-648, 1987; Paterson et al. Nature 335: 721-726, 1988), but earlier studies were often hindered by the expense and time required to identify large numbers of polymorphic genetic markers that differentiated the parental genotypes and then to genotype them on large segregating mapping populations. High-throughput sequencing has provided an efficient means to discover single nucleotide polymorphisms (SNPs) that can then be assayed rapidly on large populations with array-based techniques (Gupta et al. Heredity 101: 5-18, 2008). Alternatively, high-throughput sequencing methods such as restriction site-associated DNA sequencing (RAD-Seq) (Davey et al. Nat Rev Genet 12: 499-510, 2011; Baird et al. PloS ONE 3: e3376, 2008) and genotyping-by-sequencing (GBS) (Elshire et al. PLoS One 6: 2011; Glaubitz et al. PLoS One 9: e90346, 2014) can be used to identify and genotype polymorphic markers directly. Linkage disequilibrium (LD) between markers and causal variants is needed to detect QTL. The earliest QTL mapping methods used backcross and F2 generations of crosses between inbred lines, which have high levels of linkage disequilibrium (dependent entirely on the recombination frequency between chromosomal positions), to ensure that QTL would have sufficiently high linkage disequilibrium with one or more markers on sparse genetic linkage maps. The downside of this approach is that resolution of QTL positions is poor. The sequencing technology revolution, by facilitating genotyping of vastly more markers than was previously feasible, has allowed researchers to map QTL in situations of lower linkage disequilibrium, and consequently, at higher resolution. We provide a review of methods to identify QTL with higher precision than was previously possible. We discuss modifications of the traditional biparental mapping population that provide higher resolution of QTL positions, QTL fine-mapping procedures, and genome-wide association studies, all of which are greatly facilitated by high-throughput sequencing methods. Each of these procedures has many variants, and consequently many details to consider; we focus our chapter on the consequences of practical decisions that researchers make when designing QTL mapping studies and when analyzing the resulting data. The ultimate goal of many of these studies is to resolve a QTL to its causal sequence variation.
植物中的数量性状基因座(QTL)定位可追溯到20世纪80年代(Stuber等人,《作物科学》27: 639 - 648, 1987;Paterson等人,《自然》335: 721 - 726, 1988),但早期研究常常受到阻碍,因为识别大量能区分亲本基因型的多态性遗传标记并对大型分离定位群体进行基因分型需要花费大量资金和时间。高通量测序提供了一种有效的手段来发现单核苷酸多态性(SNP),然后可以用基于芯片的技术在大型群体上快速检测这些SNP(Gupta等人,《遗传学》101: 5 - 18, 2008)。或者,诸如限制性位点关联DNA测序(RAD - Seq)(Davey等人,《自然评论遗传学》12: 499 - 510, 2011;Baird等人,《公共科学图书馆·综合》3: e3376, 2008)和简化基因组测序(GBS)(Elshire等人,《公共科学图书馆·综合》6: 2011;Glaubitz等人,《公共科学图书馆·综合》9: e90346, 2014)等高通量测序方法可用于直接识别多态性标记并对其进行基因分型。检测QTL需要标记与因果变异之间的连锁不平衡(LD)。最早的QTL定位方法使用近交系之间杂交的回交和F2代,这些杂交具有高水平的连锁不平衡(完全取决于染色体位置之间的重组频率),以确保QTL与稀疏遗传连锁图谱上的一个或多个标记具有足够高的连锁不平衡。这种方法的缺点是QTL位置的分辨率较差。测序技术革命通过促进对比以前可行数量多得多的标记进行基因分型,使研究人员能够在连锁不平衡较低的情况下定位QTL,从而实现更高的分辨率。我们综述了比以前更精确地识别QTL的方法。我们讨论了对传统双亲定位群体的改进,这些改进能提供更高的QTL位置分辨率、QTL精细定位程序以及全基因组关联研究,所有这些都因高通量测序方法而得到极大便利。这些程序中的每一个都有许多变体,因此有许多细节需要考虑;我们在本章中重点关注研究人员在设计QTL定位研究以及分析所得数据时所做实际决策的影响。许多此类研究的最终目标是将一个QTL解析到其因果序列变异。