Suppr超能文献

锇化DNA,一种利用纳米孔对DNA进行测序的新概念。

Osmylated DNA, a novel concept for sequencing DNA using nanopores.

作者信息

Kanavarioti Anastassia

机构信息

Yenos Analytical LLC 1350 Terracina Dr El Dorado Hills, CA, USA.

出版信息

Nanotechnology. 2015 Mar 27;26(13):134003. doi: 10.1088/0957-4484/26/13/134003. Epub 2015 Mar 11.

Abstract

Saenger sequencing has led the advances in molecular biology, while faster and cheaper next generation technologies are urgently needed. A newer approach exploits nanopores, natural or solid-state, set in an electrical field, and obtains base sequence information from current variations due to the passage of a ssDNA molecule through the pore. A hurdle in this approach is the fact that the four bases are chemically comparable to each other which leads to small differences in current obstruction. 'Base calling' becomes even more challenging because most nanopores sense a short sequence and not individual bases. Perhaps sequencing DNA via nanopores would be more manageable, if only the bases were two, and chemically very different from each other; a sequence of 1s and 0s comes to mind. Osmylated DNA comes close to such a sequence of 1s and 0s. Osmylation is the addition of osmium tetroxide bipyridine across the C5-C6 double bond of the pyrimidines. Osmylation adds almost 400% mass to the reactive base, creates a sterically and electronically notably different molecule, labeled 1, compared to the unreactive purines, labeled 0. If osmylated DNA were successfully sequenced, the result would be a sequence of osmylated pyrimidines (1), and purines (0), and not of the actual nucleobases. To solve this problem we studied the osmylation reaction with short oligos and with M13mp18, a long ssDNA, developed a UV-vis assay to measure extent of osmylation, and designed two protocols. Protocol A uses mild conditions and yields osmylated thymidines (1), while leaving the other three bases (0) practically intact. Protocol B uses harsher conditions and effectively osmylates both pyrimidines, but not the purines. Applying these two protocols also to the complementary of the target polynucleotide yields a total of four osmylated strands that collectively could define the actual base sequence of the target DNA.

摘要

桑格测序引领了分子生物学的发展,然而,人们迫切需要更快且更廉价的新一代技术。一种更新的方法利用了置于电场中的天然或固态纳米孔,并通过单链DNA分子穿过纳米孔时引起的电流变化来获取碱基序列信息。这种方法的一个障碍是,四种碱基在化学性质上彼此相似,这导致电流阻碍的差异很小。“碱基识别”变得更具挑战性,因为大多数纳米孔检测到的是短序列,而非单个碱基。如果碱基只有两种且在化学性质上差异很大,那么通过纳米孔对DNA进行测序可能会更易于管理;人们会想到由1和0组成的序列。经锇化的DNA接近这样一个由1和0组成的序列。锇化是指在嘧啶的C5 - C6双键上添加四氧化锇联吡啶。与未反应的嘌呤(标记为0)相比,锇化使反应性碱基的质量增加了近400%,产生了一个在空间和电子性质上显著不同的分子,标记为1。如果成功对经锇化的DNA进行测序,结果将是经锇化的嘧啶(1)和嘌呤(0)的序列,而非实际的核碱基序列。为了解决这个问题,我们用短寡核苷酸和长单链DNA M13mp18研究了锇化反应,开发了一种紫外 - 可见光谱测定法来测量锇化程度,并设计了两种方案。方案A使用温和条件,产生经锇化的胸腺嘧啶(1),而其他三种碱基(0)几乎保持不变。方案B使用更严苛的条件,有效地使两种嘧啶都发生锇化,但嘌呤不受影响。将这两种方案也应用于目标多核苷酸的互补链,总共可得到四条经锇化的链,它们共同可以确定目标DNA的实际碱基序列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验