Ning Y, Cramer J R, Nuermaimaiti A, Svane K, Yu M, Lægsgaard E, Besenbacher F, Xue Q-K, Ma X, Hammer B, Gothelf K V, Linderoth T R
Interdisciplinary Nanoscience Center (iNANO) and Danish National Research Foundation: Danish-Chinese Centre for Self-Assembly and Function of Molecular Nanostructures on Surfaces, 8000 Aarhus C, Denmark.
Institute of Physics, The Chinese Academy of Sciences, Beijing 100190, China.
J Chem Phys. 2015 Mar 14;142(10):101922. doi: 10.1063/1.4908062.
Supra-molecular self-assembly on surfaces often involves molecular conformational flexibility which may act to enrich the variation and complexity of the structures formed. However, systematic and explicit investigations of how molecular conformational states are selected in surface self-assembly processes are relatively scarce. Here, we use a combination of high-resolution scanning tunneling microscopy and Density Functional Theory (DFT) calculations to investigate self-assembly for a custom-designed molecule capable of assuming eight distinct surface conformations (four enantiomeric pairs). The conformations result from binary positions of n = 3 naphtalene units on a linear oligo(naphthylene-ethynylene) backbone. On Au(111), inter-molecular interactions involving carboxyl and bulky tert-butyl-phenyl functional groups induce the molecules to form two ordered phases with brick-wall and lamella structure, respectively. These structures each involve molecules in two conformational states, and there is a clear separation between the conformers involved in the two types of structures. On Cu(111), individual molecules isolated by carboxylate-substrate binding show a distribution involving all possible conformational states. Together these observations imply selection and adaptation of conformational states upon molecular self-assembly. From DFT modeling and statistical analysis of the molecular conformations, the observed selection of conformational states is attributed to steric interaction between the naphthalene units. The present study enhances our understanding of how ordering and selection of molecular conformations is controlled by intermolecular interactions in a complex situation with many distinct conformational states for the participating molecules.
表面上的超分子自组装通常涉及分子构象灵活性,这可能会增加所形成结构的多样性和复杂性。然而,关于在表面自组装过程中如何选择分子构象状态的系统且明确的研究相对较少。在这里,我们结合高分辨率扫描隧道显微镜和密度泛函理论(DFT)计算,来研究一种能够呈现八种不同表面构象(四对对映体)的定制设计分子的自组装。这些构象源于线性低聚(萘乙炔)主链上n = 3个萘单元的二元位置。在Au(111)上,涉及羧基和庞大的叔丁基苯基官能团的分子间相互作用分别诱导分子形成具有砖墙结构和层状结构的两个有序相。这些结构各自涉及处于两种构象状态的分子,并且参与两种类型结构的构象异构体之间有明显的区分。在Cu(111)上,通过羧酸盐 - 底物结合而分离的单个分子显示出涉及所有可能构象状态的分布。这些观察结果共同表明在分子自组装过程中构象状态的选择和适应性。通过对分子构象的DFT建模和统计分析,观察到的构象状态选择归因于萘单元之间的空间相互作用。本研究增进了我们对在参与分子具有许多不同构象状态的复杂情况下,分子构象的排序和选择如何由分子间相互作用控制的理解。