Le Hoang V, Hawker Dustin D, Wu Rui, Doud Emma, Widom Julia, Sanishvili Ruslan, Liu Dali, Kelleher Neil L, Silverman Richard B
†Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, and the Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, United States.
‡Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States.
J Am Chem Soc. 2015 Apr 8;137(13):4525-33. doi: 10.1021/jacs.5b01155. Epub 2015 Mar 30.
Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson's disease, Alzheimer's disease, Huntington's disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O═C interaction with Glu-270, thereby inactivating the enzyme.
γ-氨基丁酸(GABA)是调节大脑神经元活动的两种主要神经递质之一,其水平低下与许多神经系统疾病有关,如癫痫、帕金森病、阿尔茨海默病、亨廷顿舞蹈症和可卡因成瘾。提高人脑中GABA水平的主要方法之一是使用能够穿过血脑屏障并抑制γ-氨基丁酸转氨酶(GABA-AT,一种降解GABA的酶)活性的小分子。我们设计了一系列基于四氢噻吩的构象受限GABA类似物,其具有位置恰当的离去基团,可促进开环机制,导致GABA-AT失活。该系列中的一种化合物作为GABA-AT失活剂的效率比vigabatrin(唯一获美国食品药品监督管理局批准的GABA-AT失活剂)高8倍。我们的机理研究表明,该化合物通过一种新机制使GABA-AT失活。失活产生的代谢产物不会与GABA-AT的氨基酸残基共价结合,而是通过与Arg-192的氢键相互作用、与Phe-189的π-π相互作用以及与Glu-270的弱非键S···O═C相互作用留在活性位点,从而使酶失活。