Kondo Yumi, Zhao Yinshan, Petkau John
Department of Statistics, University of British Columbia, Vancouver, Canada.
Stat Med. 2015 Jun 15;34(13):2165-80. doi: 10.1002/sim.6484. Epub 2015 Mar 18.
We develop a new modeling approach to enhance a recently proposed method to detect increases of contrast-enhancing lesions (CELs) on repeated magnetic resonance imaging, which have been used as an indicator for potential adverse events in multiple sclerosis clinical trials. The method signals patients with unusual increases in CEL activity by estimating the probability of observing CEL counts as large as those observed on a patient's recent scans conditional on the patient's CEL counts on previous scans. This conditional probability index (CPI), computed based on a mixed-effect negative binomial regression model, can vary substantially depending on the choice of distribution for the patient-specific random effects. Therefore, we relax this parametric assumption to model the random effects with an infinite mixture of beta distributions, using the Dirichlet process, which effectively allows any form of distribution. To our knowledge, no previous literature considers a mixed-effect regression for longitudinal count variables where the random effect is modeled with a Dirichlet process mixture. As our inference is in the Bayesian framework, we adopt a meta-analytic approach to develop an informative prior based on previous clinical trials. This is particularly helpful at the early stages of trials when less data are available. Our enhanced method is illustrated with CEL data from 10 previous multiple sclerosis clinical trials. Our simulation study shows that our procedure estimates the CPI more accurately than parametric alternatives when the patient-specific random effect distribution is misspecified and that an informative prior improves the accuracy of the CPI estimates.
我们开发了一种新的建模方法,以改进最近提出的一种方法,该方法用于在重复的磁共振成像上检测对比增强病变(CEL)的增加,CEL已被用作多发性硬化症临床试验中潜在不良事件的指标。该方法通过估计在患者先前扫描的CEL计数条件下,观察到与患者近期扫描中观察到的CEL计数一样大的CEL计数的概率,来标记CEL活动异常增加的患者。基于混合效应负二项回归模型计算的这种条件概率指数(CPI),会因患者特定随机效应的分布选择而有很大差异。因此,我们放宽这一参数假设,使用狄利克雷过程以贝塔分布的无限混合来对随机效应进行建模,这有效地允许任何形式的分布。据我们所知,以前没有文献考虑对纵向计数变量进行混合效应回归,其中随机效应是用狄利克雷过程混合来建模的。由于我们的推断是在贝叶斯框架下进行的,我们采用一种荟萃分析方法,基于以前的临床试验来开发一个信息性先验。这在试验早期数据较少时特别有帮助。我们用来自之前10项多发性硬化症临床试验的CEL数据说明了我们改进后的方法。我们的模拟研究表明,当患者特定随机效应分布被错误指定时,我们的程序比参数替代方法更准确地估计CPI,并且一个信息性先验提高了CPI估计的准确性。