Suppr超能文献

Evidence for an excitatory GABAA response in human motor cortex in idiopathic generalised epilepsy.

作者信息

Silbert Benjamin I, Heaton Alexandra E, Cash Robin F H, James Ian, Dunne John W, Lawn Nicholas D, Silbert Peter L, Mastaglia Frank L, Thickbroom Gary W

机构信息

Western Australian Neuroscience Research Institute, University of Western Australia, 4th Floor, A Block, QEII Medical Centre, Verdun Street, Nedlands, Perth, Western Australia 6009, Australia.

Western Australian Neuroscience Research Institute, University of Western Australia, 4th Floor, A Block, QEII Medical Centre, Verdun Street, Nedlands, Perth, Western Australia 6009, Australia; Division of Brain, Imaging and Behaviour - Systems Neuroscience, Toronto Western Research Institute, University Health Network, 339 Bathurst Street, MP14-324, Toronto, Ontario M5T 2S8, Canada.

出版信息

Seizure. 2015 Mar;26:36-42. doi: 10.1016/j.seizure.2015.01.014. Epub 2015 Jan 29.

Abstract

PURPOSE

Impaired GABAergic inhibition has been implicated in the pathophysiology of epilepsy. The possibility of a paradoxical excitatory effect of GABA in epilepsy has been suggested, but has not been investigated in vivo. We investigated pre- and post-synaptic GABAergic mechanisms in patients with idiopathic generalised epilepsy (IGE).

METHOD

In 10 patients and 12 control subjects we explored short- and long-interval intracortical inhibition (SICI, LICI; post-synaptic GABAA and GABAB-mediated respectively) and long-interval intracortical facilitation (LICF; pre-synaptic disinhibition) using transcranial magnetic stimulation.

RESULTS

While post-synaptic GABAB-mediated inhibition was unchanged in IGE (p=0.09), LICF was reduced compared to controls (controls: 141±17% of baseline; untreated patients: 107±12%, p=0.2; treated patients: 79±10%, p=0.003). GABAA-mediated inhibition was reduced in untreated patients (response amplitude 56±4% of baseline vs. 26±6% in controls, p=0.004) and normalised with treatment (37±12%, p=0.5 vs. controls). When measured during LICI, GABAA-mediated inhibition became excitatory in untreated IGE (response amplitude 120±10% of baseline, p=0.017), but not in treated patients.

CONCLUSION

Pre- and post-synaptic GABA-mediated inhibitory mechanisms are altered in IGE. The findings lend in vivo support to evidence from experimental models and in vitro studies of human epileptic brain tissue that GABA may have a paradoxical excitatory role in ictogenesis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验