Wirz Lukas N, Tonner Ralf, Hermann Andreas, Sure Rebecca, Schwerdtfeger Peter
Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0745, Auckland, New Zealand.
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35032, Marburg, Germany.
J Comput Chem. 2016 Jan 5;37(1):10-7. doi: 10.1002/jcc.23894. Epub 2015 Mar 26.
We introduce a simple but computationally very efficient harmonic force field, which works for all fullerene structures and includes bond stretching, bending, and torsional motions as implemented into our open-source code Fullerene. This gives accurate geometries and reasonably accurate vibrational frequencies with root mean square deviations of up to 0.05 Å for bond distances and 45.5 cm(-1) for vibrational frequencies compared with more elaborate density functional calculations. The structures obtained were used for density functional calculations of Goldberg-Coxeter fullerenes up to C980. This gives a rather large range of fullerenes making it possible to extrapolate to the graphene limit. Periodic boundary condition calculations using density functional theory (DFT) within the projector augmented wave method gave an energy difference between -8.6 and -8.8 kcal/mol at various levels of DFT for the reaction C60 →graphene (per carbon atom) in excellent agreement with the linear extrapolation to the graphene limit (-8.6 kcal/mol at the Perdew-Burke-Ernzerhof level of theory).
我们引入了一种简单但计算效率非常高的谐振子力场,它适用于所有富勒烯结构,并将键伸缩、弯曲和扭转运动纳入我们的开源代码Fullerene中。与更精细的密度泛函计算相比,这给出了精确的几何结构和相当准确的振动频率,键长的均方根偏差高达0.05 Å,振动频率的均方根偏差为45.5 cm⁻¹。所获得的结构用于对高达C980的戈德堡 - 考克斯特富勒烯进行密度泛函计算。这涵盖了相当大范围的富勒烯,从而有可能外推到石墨烯极限。使用投影增强波方法中的密度泛函理论(DFT)进行的周期性边界条件计算表明,在不同的DFT水平下,反应C60 → 石墨烯(每个碳原子)的能量差在 -8.6至 -8.8 kcal/mol之间,这与外推到石墨烯极限(在Perdew - Burke - Ernzerhof理论水平下为 -8.6 kcal/mol)的线性结果非常吻合。