Suppr超能文献

慢性肺病中患者特异性气道壁重塑

Patient-Specific Airway Wall Remodeling in Chronic Lung Disease.

作者信息

Eskandari Mona, Kuschner Ware G, Kuhl Ellen

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.

Medical Service, Veterans Affairs Palo Alto Health Care System, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA.

出版信息

Ann Biomed Eng. 2015 Oct;43(10):2538-51. doi: 10.1007/s10439-015-1306-7. Epub 2015 Mar 28.

Abstract

Chronic lung disease affects more than a quarter of the adult population; yet, the mechanics of the airways are poorly understood. The pathophysiology of chronic lung disease is commonly characterized by mucosal growth and smooth muscle contraction of the airways, which initiate an inward folding of the mucosal layer and progressive airflow obstruction. Since the degree of obstruction is closely correlated with the number of folds, mucosal folding has been extensively studied in idealized circular cross sections. However, airflow obstruction has never been studied in real airway geometries; the behavior of imperfect, non-cylindrical, continuously branching airways remains unknown. Here we model the effects of chronic lung disease using the nonlinear field theories of mechanics supplemented by the theory of finite growth. We perform finite element analysis of patient-specific Y-branch segments created from magnetic resonance images. We demonstrate that the mucosal folding pattern is insensitive to the specific airway geometry, but that it critically depends on the mucosal and submucosal stiffness, thickness, and loading mechanism. Our results suggests that patient-specific airway models with inherent geometric imperfections are more sensitive to obstruction than idealized circular models. Our models help to explain the pathophysiology of airway obstruction in chronic lung disease and hold promise to improve the diagnostics and treatment of asthma, bronchitis, chronic obstructive pulmonary disease, and respiratory failure.

摘要

慢性肺部疾病影响着超过四分之一的成年人口;然而,气道的力学原理却鲜为人知。慢性肺部疾病的病理生理学通常表现为气道黏膜生长和平滑肌收缩,这会引发黏膜层向内折叠并导致进行性气流阻塞。由于阻塞程度与褶皱数量密切相关,因此在理想化的圆形横截面中对黏膜折叠进行了广泛研究。然而,气流阻塞从未在真实的气道几何形状中进行过研究;不完美、非圆柱形、连续分支的气道的行为仍然未知。在这里,我们使用力学的非线性场理论并辅以有限生长理论来模拟慢性肺部疾病的影响。我们对从磁共振图像创建的患者特异性Y形分支段进行有限元分析。我们证明黏膜折叠模式对特定的气道几何形状不敏感,但它关键取决于黏膜和黏膜下层的刚度、厚度以及加载机制。我们的结果表明,具有固有几何缺陷的患者特异性气道模型比理想化的圆形模型对阻塞更敏感。我们的模型有助于解释慢性肺部疾病中气道阻塞的病理生理学,并有望改善哮喘、支气管炎、慢性阻塞性肺疾病和呼吸衰竭的诊断和治疗。

相似文献

1
Patient-Specific Airway Wall Remodeling in Chronic Lung Disease.
Ann Biomed Eng. 2015 Oct;43(10):2538-51. doi: 10.1007/s10439-015-1306-7. Epub 2015 Mar 28.
2
On the Role of Mechanics in Chronic Lung Disease.
Materials (Basel). 2013 Dec 4;6(12):5639-5658. doi: 10.3390/ma6125639.
3
Possible role of differential growth in airway wall remodeling in asthma.
J Appl Physiol (1985). 2011 Apr;110(4):1003-12. doi: 10.1152/japplphysiol.00991.2010. Epub 2011 Jan 20.
4
On the mechanism of mucosal folding in normal and asthmatic airways.
J Appl Physiol (1985). 1997 Dec;83(6):1814-21. doi: 10.1152/jappl.1997.83.6.1814.
5
Mechanisms of airway remodeling.
Chest. 2013 Sep;144(3):1026-1032. doi: 10.1378/chest.12-3073.
6
Airway mucus, inflammation and remodeling: emerging links in the pathogenesis of chronic lung diseases.
Cell Tissue Res. 2017 Mar;367(3):537-550. doi: 10.1007/s00441-016-2562-z. Epub 2017 Jan 20.
7
Differences in airway remodeling between asthma and chronic obstructive pulmonary disease.
Clin Rev Allergy Immunol. 2004 Aug;27(1):35-43. doi: 10.1385/CRIAI:27:1:035.
8
Elastosis during airway wall remodeling explains multiple co-existing instability patterns.
J Theor Biol. 2016 Aug 21;403:209-218. doi: 10.1016/j.jtbi.2016.05.022. Epub 2016 May 19.
9
Airway structural components drive airway smooth muscle remodeling in asthma.
Proc Am Thorac Soc. 2009 Dec;6(8):683-92. doi: 10.1513/pats.200907-056DP.

引用本文的文献

1
Digital twins for chronic lung diseases.
Eur Respir Rev. 2024 Dec 18;33(174). doi: 10.1183/16000617.0159-2024. Print 2024 Oct.
2
Morphometric analysis of airways in pre-COPD and mild COPD lungs using continuous surface representations of the bronchial lumen.
Front Bioeng Biotechnol. 2023 Dec 19;11:1271760. doi: 10.3389/fbioe.2023.1271760. eCollection 2023.
3
PDE-constrained shape registration to characterize biological growth and morphogenesis from imaging data.
Eng Comput. 2022 Oct;38(5):3909-3924. doi: 10.1007/s00366-022-01682-x. Epub 2022 Jul 9.
5
Programmable Tissue Folding Patterns in Structured Hydrogels.
Adv Mater. 2024 Oct;36(43):e2300017. doi: 10.1002/adma.202300017. Epub 2023 May 16.
7
Mouse lung mechanical properties under varying inflation volumes and cycling frequencies.
Sci Rep. 2022 May 2;12(1):7094. doi: 10.1038/s41598-022-10417-3.
10
Three-Dimensional Whole-Organ Characterization of the Regional Alveolar Morphology in Normal Murine Lungs.
Front Physiol. 2021 Dec 8;12:755468. doi: 10.3389/fphys.2021.755468. eCollection 2021.

本文引用的文献

1
On the Role of Mechanics in Chronic Lung Disease.
Materials (Basel). 2013 Dec 4;6(12):5639-5658. doi: 10.3390/ma6125639.
2
Mechanics of the brain: perspectives, challenges, and opportunities.
Biomech Model Mechanobiol. 2015 Oct;14(5):931-65. doi: 10.1007/s10237-015-0662-4. Epub 2015 Feb 26.
3
Pattern selection in growing tubular tissues.
Phys Rev Lett. 2014 Dec 12;113(24):248101. doi: 10.1103/PhysRevLett.113.248101. Epub 2014 Dec 9.
4
On high heels and short muscles: a multiscale model for sarcomere loss in the gastrocnemius muscle.
J Theor Biol. 2015 Jan 21;365:301-10. doi: 10.1016/j.jtbi.2014.10.036. Epub 2014 Nov 7.
5
Computational modeling of hypertensive growth in the human carotid artery.
Comput Mech. 2014 Jun;53(6):1183-1196. doi: 10.1007/s00466-013-0959-z.
6
The Living Heart Project: A robust and integrative simulator for human heart function.
Eur J Mech A Solids. 2014 Nov;48:38-47. doi: 10.1016/j.euromechsol.2014.04.001.
7
The role of mechanics during brain development.
J Mech Phys Solids. 2014 Dec 1;72:75-92. doi: 10.1016/j.jmps.2014.07.010.
9
A structural approach including the behavior of collagen cross-links to model patient-specific human carotid arteries.
Ann Biomed Eng. 2014 Jun;42(6):1158-69. doi: 10.1007/s10439-014-0995-7. Epub 2014 Mar 18.
10
A novel strategy to identify the critical conditions for growth-induced instabilities.
J Mech Behav Biomed Mater. 2014 Jan;29:20-32. doi: 10.1016/j.jmbbm.2013.08.017. Epub 2013 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验