Suppr超能文献

一类随机非线性互联系统的鲁棒自适应神经网络跟踪控制。

Robust Adaptive Neural Tracking Control for a Class of Stochastic Nonlinear Interconnected Systems.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Mar;27(3):510-23. doi: 10.1109/TNNLS.2015.2412035. Epub 2015 Mar 24.

Abstract

In this paper, an adaptive neural decentralized control approach is proposed for a class of multiple input and multiple output uncertain stochastic nonlinear strong interconnected systems. Radial basis function neural networks are used to approximate the packaged unknown nonlinearities, and backstepping technique is utilized to construct an adaptive neural decentralized controller. The proposed control scheme can guarantee that all signals of the resulting closed-loop system are semiglobally uniformly ultimately bounded in the sense of fourth moment, and the tracking errors eventually converge to a small neighborhood around the origin. The main feature of this paper is that the proposed approach is capable of controlling the stochastic systems with strong interconnected nonlinearities both in the drift and diffusion terms that are the functions of all states of the overall system. Simulation results are used to illustrate the effectiveness of the suggested approach.

摘要

本文提出了一种适用于一类多输入多输出不确定随机非线性强互联系统的自适应神经网络分散控制方法。径向基函数神经网络用于逼近已打包的未知非线性项,并且利用反推技术构建了一个自适应神经网络分散控制器。所提出的控制方案可以保证闭环系统的所有信号在四阶矩意义下是半全局一致有界的,并且跟踪误差最终收敛到原点附近的一个小邻域内。本文的主要特点是,所提出的方法能够控制漂移和扩散项中均包含整个系统所有状态函数的强互联随机非线性系统。仿真结果用于验证所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验