Suppr超能文献

基于观测器的非线性非严格反馈系统自适应神经网络控制。

Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Jan;27(1):89-98. doi: 10.1109/TNNLS.2015.2412121. Epub 2015 Mar 25.

Abstract

This paper focuses on the problem of adaptive neural network (NN) control for a class of nonlinear nonstrict-feedback systems via output feedback. A novel adaptive NN backstepping output-feedback control approach is first proposed for nonlinear nonstrict-feedback systems. The monotonicity of system bounding functions and the structure character of radial basis function (RBF) NNs are used to overcome the difficulties that arise from nonstrict-feedback structure. A state observer is constructed to estimate the immeasurable state variables. By combining adaptive backstepping technique with approximation capability of radial basis function NNs, an output-feedback adaptive NN controller is designed through backstepping approach. It is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems. Two examples are used to illustrate the effectiveness of the proposed approach.

摘要

本文针对一类通过输出反馈的非线性非严格反馈系统的自适应神经网络 (NN) 控制问题进行了研究。首次针对非线性非严格反馈系统提出了一种新的自适应 NN 反推输出反馈控制方法。利用系统界函数的单调性和径向基函数 (RBF) NN 的结构特征,克服了非严格反馈结构带来的困难。构建了一个状态观测器来估计不可测的状态变量。通过自适应反推技术与 RBF NN 的逼近能力相结合,通过反推方法设计了一个输出反馈自适应 NN 控制器。证明了所提出的控制器保证了闭环系统中所有信号的半全局有界性。通过两个实例说明了所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验