文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 BET 算法的 T1 加权磁共振图像中婴儿脑区提取,并用 LCDG 和 MGRF 模型进行细化。

Infant Brain Extraction in T1-Weighted MR Images Using BET and Refinement Using LCDG and MGRF Models.

出版信息

IEEE J Biomed Health Inform. 2016 May;20(3):925-935. doi: 10.1109/JBHI.2015.2415477. Epub 2015 Mar 23.


DOI:10.1109/JBHI.2015.2415477
PMID:25823048
Abstract

In this paper, we propose a novel framework for the automated extraction of the brain from T1-weighted MR images. The proposed approach is primarily based on the integration of a stochastic model [a two-level Markov-Gibbs random field (MGRF)] that serves to learn the visual appearance of the brain texture, and a geometric model (the brain isosurfaces) that preserves the brain geometry during the extraction process. The proposed framework consists of three main steps: 1) Following bias correction of the brain, a new three-dimensional (3-D) MGRF having a 26-pairwise interaction model is applied to enhance the homogeneity of MR images and preserve the 3-D edges between different brain tissues. 2) The nonbrain tissue found in the MR images is initially removed using the brain extraction tool (BET), and then the brain is parceled to nested isosurfaces using a fast marching level set method. 3) Finally, a classification step is applied in order to accurately remove the remaining parts of the skull without distorting the brain geometry. The classification of each voxel found on the isosurfaces is made based on the first- and second-order visual appearance features. The first-order visual appearance is estimated using a linear combination of discrete Gaussians (LCDG) to model the intensity distribution of the brain signals. The second-order visual appearance is constructed using an MGRF model with analytically estimated parameters. The fusion of the LCDG and MGRF, along with their analytical estimation, allows the approach to be fast and accurate for use in clinical applications. The proposed approach was tested on in vivo data using 300 infant 3-D MR brain scans, which were qualitatively validated by an MR expert. In addition, it was quantitatively validated using 30 datasets based on three metrics: the Dice coefficient, the 95% modified Hausdorff distance, and absolute brain volume difference. Results showed the capability of the proposed approach, outperforming four widely used BETs: BET, BET2, brain surface extractor, and infant brain extraction and analysis toolbox. Experiments conducted also proved that the proposed framework can be generalized to adult brain extraction as well.

摘要

本文提出了一种新的框架,用于从 T1 加权磁共振图像中自动提取大脑。该方法主要基于随机模型(两级马尔可夫-吉布斯随机场(MGRF))和几何模型(大脑等位面)的集成,前者用于学习大脑纹理的视觉外观,后者用于在提取过程中保持大脑的几何形状。所提出的框架由三个主要步骤组成:1)在大脑偏置校正之后,应用具有 26 对相互作用模型的新的三维(3-D)MGRF 来增强磁共振图像的均匀性并保留不同脑组织之间的 3-D 边缘。2)使用脑提取工具(BET)初步去除磁共振图像中的非脑组织,然后使用快速行进水平集方法将大脑分割成嵌套等位面。3)最后,应用分类步骤以准确去除颅骨的其余部分,而不会扭曲大脑的几何形状。基于等位面的每个体素的分类是基于一阶和二阶视觉外观特征进行的。一阶视觉外观是使用离散高斯的线性组合(LCDG)来建模大脑信号的强度分布进行估计的。二阶视觉外观是使用具有分析估计参数的 MGRF 模型构建的。LCDG 和 MGRF 的融合及其分析估计使得该方法在临床应用中快速且准确。该方法在 300 例婴儿 3-D 磁共振脑扫描的体内数据上进行了测试,并由磁共振专家进行了定性验证。此外,还使用基于三个度量标准(骰子系数、95%修正的 Hausdorff 距离和绝对脑体积差异)的 30 个数据集进行了定量验证。结果表明,该方法具有较高的性能,优于四种广泛使用的 BET:BET、BET2、脑表面提取器和婴儿脑提取和分析工具箱。实验还证明,该框架也可以推广到成人脑提取。

相似文献

[1]
Infant Brain Extraction in T1-Weighted MR Images Using BET and Refinement Using LCDG and MGRF Models.

IEEE J Biomed Health Inform. 2015-3-23

[2]
A fast stochastic framework for automatic MR brain images segmentation.

PLoS One. 2017-11-14

[3]
Myocardial borders segmentation from cine MR images using bidirectional coupled parametric deformable models.

Med Phys. 2013-9

[4]
Advanced OCTA imaging segmentation: Unsupervised, non-linear retinal vessel detection using modified self-organizing maps and joint MGRF modeling.

Comput Methods Programs Biomed. 2024-9

[5]
A novel 3D joint Markov-Gibbs model for extracting blood vessels from PC-MRA images.

Med Image Comput Comput Assist Interv. 2009

[6]
Accurate Lungs Segmentation on CT Chest Images by Adaptive Appearance-Guided Shape Modeling.

IEEE Trans Med Imaging. 2016-9-12

[7]
Optimizing parameter choice for FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis.

Neuroimage. 2012-3-30

[8]
Brain MR image segmentation based on an improved active contour model.

PLoS One. 2017-8-30

[9]
Skull stripping based on region growing for magnetic resonance brain images.

Neuroimage. 2009-10-1

[10]
An accurate and robust skull stripping method for 3-D magnetic resonance brain images.

Magn Reson Imaging. 2018-12

引用本文的文献

[1]
Automated neonatal nnU-Net brain MRI extractor trained on a large multi-institutional dataset.

Sci Rep. 2024-2-26

[2]
Effect of changing the analyzed image contrast on the accuracy of intracranial volume extraction using Brain Extraction Tool 2.

Radiol Phys Technol. 2020-3

[3]
FRNET: FLATTENED RESIDUAL NETWORK FOR INFANT MRI SKULL STRIPPING.

Proc IEEE Int Symp Biomed Imaging. 2019-4

[4]
A fast stochastic framework for automatic MR brain images segmentation.

PLoS One. 2017-11-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索