Suppr超能文献

利用电刺激实现可编程和按需药物释放。

Programmable and on-demand drug release using electrical stimulation.

机构信息

Department of Chemical Engineering, National Taiwan University , Taipei, Taiwan, Republic of China.

Department of Bio-Industrial Mechatronics Engineering, National Taiwan University , Taipei, Taiwan, Republic of China.

出版信息

Biomicrofluidics. 2015 Mar 19;9(2):022401. doi: 10.1063/1.4915607. eCollection 2015 Mar.

Abstract

Recent advancement in microfabrication has enabled the implementation of implantable drug delivery devices with precise drug administration and fast release rates at specific locations. This article presents a membrane-based drug delivery device, which can be electrically stimulated to release drugs on demand with a fast release rate. Hydrogels with ionic model drugs are sealed in a cylindrical reservoir with a separation membrane. Electrokinetic forces are then utilized to drive ionic drug molecules from the hydrogels into surrounding bulk solutions. The drug release profiles of a model drug show that release rates from the device can be electrically controlled by adjusting the stimulated voltage. When a square voltage wave is applied, the device can be quickly switched between on and off to achieve pulsatile release. The drug dose released is then determined by the duration and amplitude of the applied voltages. In addition, successive on/off cycles can be programmed in the voltage waveforms to generate consistent and repeatable drug release pulses for on-demand drug delivery.

摘要

最近微制造技术的进步使得能够实现具有精确药物管理和在特定位置快速释放速度的植入式药物输送装置。本文提出了一种基于膜的药物输送装置,该装置可以通过电刺激以快速释放速度按需释放药物。具有离子模型药物的水凝胶被密封在带有分离膜的圆柱形储液器中。然后利用电动力量将离子药物分子从水凝胶中驱入周围的大量溶液中。模型药物的药物释放曲线表明,通过调整刺激电压可以对装置的释放速率进行电控制。当施加方波电压时,装置可以快速在开启和关闭之间切换,从而实现脉冲式释放。然后,通过施加电压的持续时间和幅度来确定释放的药物剂量。此外,可以在电压波形中编程连续的开/关循环,以产生一致且可重复的按需药物输送脉冲。

相似文献

1
Programmable and on-demand drug release using electrical stimulation.
Biomicrofluidics. 2015 Mar 19;9(2):022401. doi: 10.1063/1.4915607. eCollection 2015 Mar.
2
Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized "smart" drug release.
Acta Biomater. 2018 May;72:55-69. doi: 10.1016/j.actbio.2018.03.018. Epub 2018 Mar 17.
3
Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release.
Int J Biol Macromol. 2019 Nov 1;140:255-264. doi: 10.1016/j.ijbiomac.2019.08.120. Epub 2019 Aug 14.
4
Microchips and controlled-release drug reservoirs.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Jul-Aug;2(4):400-17. doi: 10.1002/wnan.93.
6
Electro-responsive drug delivery from hydrogels.
J Control Release. 2003 Sep 19;92(1-2):1-17. doi: 10.1016/s0168-3659(03)00303-1.
7
Drug delivery systems for programmed and on-demand release.
Adv Drug Deliv Rev. 2018 Jul;132:104-138. doi: 10.1016/j.addr.2018.07.002. Epub 2018 Jul 6.
8
Loading into and electro-stimulated release of peptides and proteins from chondroitin 4-sulphate hydrogels.
Eur J Pharm Sci. 2002 Mar;15(2):139-48. doi: 10.1016/s0928-0987(01)00193-2.
9
Near-infrared-actuated devices for remotely controlled drug delivery.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1349-54. doi: 10.1073/pnas.1322651111. Epub 2014 Jan 13.
10
Implantable multireservoir device with stimulus-responsive membrane for on-demand and pulsatile delivery of growth hormone.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11664-11672. doi: 10.1073/pnas.1906931116. Epub 2019 May 23.

引用本文的文献

2
A soft implantable energy supply system that integrates wireless charging and biodegradable Zn-ion hybrid supercapacitors.
Sci Adv. 2023 Nov 17;9(46):eadh8083. doi: 10.1126/sciadv.adh8083. Epub 2023 Nov 15.
4
Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering.
Adv Healthc Mater. 2022 Jul;11(13):e2200055. doi: 10.1002/adhm.202200055. Epub 2022 May 7.
5
Shape induced acid responsive heat triggered highly facilitated drug release by cube shaped magnetite nanoparticles.
Biomicrofluidics. 2016 Dec 1;10(6):064112. doi: 10.1063/1.4971439. eCollection 2016 Nov.

本文引用的文献

1
Reservoir-based drug delivery systems utilizing microtechnology.
Adv Drug Deliv Rev. 2012 Nov;64(14):1590-602. doi: 10.1016/j.addr.2012.02.005. Epub 2012 Feb 21.
2
Drug release from electric-field-responsive nanoparticles.
ACS Nano. 2012 Jan 24;6(1):227-33. doi: 10.1021/nn203430m. Epub 2011 Nov 30.
3
A magnetically controlled MEMS device for drug delivery: design, fabrication, and testing.
Lab Chip. 2011 Sep 21;11(18):3072-80. doi: 10.1039/c1lc20438f. Epub 2011 Aug 22.
4
On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device.
Lab Chip. 2011 Aug 21;11(16):2744-52. doi: 10.1039/c1lc20134d. Epub 2011 Jun 23.
5
A low-voltage electrokinetic nanochannel drug delivery system.
Lab Chip. 2011 Aug 7;11(15):2526-34. doi: 10.1039/c1lc00001b. Epub 2011 Jun 15.
6
Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release.
Nano Lett. 2011 Mar 9;11(3):1395-400. doi: 10.1021/nl200494t. Epub 2011 Feb 23.
7
8
A magnetically triggered composite membrane for on-demand drug delivery.
Nano Lett. 2009 Oct;9(10):3651-7. doi: 10.1021/nl9018935.
9
A flexible drug delivery chip for the magnetically-controlled release of anti-epileptic drugs.
J Control Release. 2009 Nov 3;139(3):221-8. doi: 10.1016/j.jconrel.2009.07.002. Epub 2009 Jul 14.
10
A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release.
Biomed Microdevices. 2009 Aug;11(4):861-7. doi: 10.1007/s10544-009-9303-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验