Suppr超能文献

用于二分类的免疫质心过采样方法。

Immune centroids oversampling method for binary classification.

作者信息

Ai Xusheng, Wu Jian, Sheng Victor S, Zhao Pengpeng, Cui Zhiming

机构信息

The Institute of Information Processing and Application, Soochow University, Suzhou 215006, China.

Department of Computer Science, University of Central Arkansas, Conway, AR 72035, USA.

出版信息

Comput Intell Neurosci. 2015;2015:109806. doi: 10.1155/2015/109806. Epub 2015 Mar 5.

Abstract

To improve the classification performance of imbalanced learning, a novel oversampling method, immune centroids oversampling technique (ICOTE) based on an immune network, is proposed. ICOTE generates a set of immune centroids to broaden the decision regions of the minority class space. The representative immune centroids are regarded as synthetic examples in order to resolve the imbalance problem. We utilize an artificial immune network to generate synthetic examples on clusters with high data densities, which can address the problem of synthetic minority oversampling technique (SMOTE), which lacks reflection on groups of training examples. Meanwhile, we further improve the performance of ICOTE via integrating ENN with ICOTE, that is, ICOTE + ENN. ENN disposes the majority class examples that invade the minority class space, so ICOTE + ENN favors the separation of both classes. Our comprehensive experimental results show that two proposed oversampling methods can achieve better performance than the renowned resampling methods.

摘要

为了提高不平衡学习的分类性能,提出了一种基于免疫网络的新型过采样方法——免疫质心过采样技术(ICOTE)。ICOTE生成一组免疫质心以拓宽少数类空间的决策区域。具有代表性的免疫质心被视为合成样本,以解决不平衡问题。我们利用人工免疫网络在高数据密度的聚类上生成合成样本,这可以解决合成少数类过采样技术(SMOTE)缺乏对训练样本组进行考量的问题。同时,我们通过将ENN与ICOTE集成进一步提高ICOTE的性能,即ICOTE + ENN。ENN处理侵入少数类空间的多数类样本,因此ICOTE + ENN有利于两类的分离。我们的综合实验结果表明,所提出的两种过采样方法比著名的重采样方法具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/affe/4365371/ceab82a698c8/CIN2015-109806.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验