Suppr超能文献

基于对象跟踪掩码的GPU上的归一化查找表,用于实时生成三维场景的全息视频。

Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

作者信息

Kwon M-W, Kim S-C, Yoon S-E, Ho Y-S, Kim E-S

出版信息

Opt Express. 2015 Feb 9;23(3):2101-20. doi: 10.1364/OE.23.002101.

Abstract

A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

摘要

提出了一种基于新的目标跟踪掩码的新型查找表(OTM-NLUT)方法,并在图形处理单元(GPU)上实现,用于实时生成三维(3-D)场景的全息视频。由于所提出的方法设计为与GPU的软件和内存结构相匹配,因此该方法的计算统一设备架构(CUDA)内核函数调用次数和计算机生成全息图(CGH)缓冲区大小已显著减少。因此,该方法的计算速度大幅提高,并能够实时生成3-D场景的CGH图案。实验结果表明,在所提出的方法中,在NVIDIA GTX TITAN的三块GPU板上,对于具有12666个目标点的三个测试3-D视频场景,平均每秒可以生成31.1帧1920×1080像素的菲涅耳CGH图案,并证实了该方法在电全息3-D显示实际应用中的可行性。

相似文献

3
Faster generation of holographic video of 3-D scenes with a Fourier spectrum-based NLUT method.
Opt Express. 2021 Nov 22;29(24):39738-39754. doi: 10.1364/OE.442267.
5
Generation of real-time large computer generated hologram using wavefront recording method.
Opt Express. 2012 Feb 13;20(4):4018-23. doi: 10.1364/OE.20.004018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验