Nam Sungmin, Cho Inhee, Heo Joonseong, Lim Geunbae, Bazant Martin Z, Moon Dustin Jaesuk, Sung Gun Yong, Kim Sung Jae
Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-744, Republic of Korea.
Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.
Phys Rev Lett. 2015 Mar 20;114(11):114501. doi: 10.1103/PhysRevLett.114.114501. Epub 2015 Mar 16.
Direct evidence is provided for the transition from surface conduction (SC) to electro-osmotic flow (EOF) above a critical channel depth (d) of a nanofluidic device. The dependence of the overlimiting conductance (OLC) on d is consistent with theoretical predictions, scaling as d(-1) for SC and d(4/5) for EOF with a minimum around d=8 μm. The propagation of transient deionization shocks is also visualized, revealing complex patterns of EOF vortices and unstable convection with increasing d. This unified picture of surface-driven OLC can guide further advances in electrokinetic theory, as well as engineering applications of ion concentration polarization in microfluidics and porous media.
为纳米流体装置在临界通道深度(d)以上从表面传导(SC)向电渗流(EOF)的转变提供了直接证据。过极限电导(OLC)对d的依赖性与理论预测一致,在表面传导时按d(-1)缩放,在电渗流时按d(4/5)缩放,在d = 8μm左右出现最小值。还可视化了瞬态去离子化冲击的传播,揭示了随着d增加电渗流涡旋和不稳定对流的复杂模式。这种表面驱动的过极限电导的统一图景可以指导电动理论的进一步发展,以及微流体和多孔介质中离子浓度极化的工程应用。